Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn cực trị số phức - Phạm Minh Tuấn

Bài toán cực trị số phức (GTLN – GTNN số phức, min – max số phức) là một dạng toán vận dụng cao được bắt gặp khá nhiều trong các đề thi thử THPT Quốc gia môn Toán trong những năm gần đây, nhất là sau khi bộ Giáo dục và Đào tạo quyết định chuyển bài thi môn Toán từ dạng tự luận sang trắc nghiệm. Có thể nói, bài toán cực trị số phức là một trong những dạng toán chính quyết định “cuộc chơi ở top đầu”, bởi để nắm được cách giải các bài toán cực trị số phức, đòi hỏi học sinh phải có kiến thức vững vàng về bất đẳng thức và hình học giải tích mặt phẳng Oxy. Do chỉ mới được phổ biến trong những năm gần đây, tài liệu về các bài toán cực trị số phức (GTLN – GTNN số phức, min – max số phức) vẫn còn khá hạn chế, nên học sinh thường gặp phải những lúng túng nhất định khi đối mặt với dạng toán này, vì vậy xin giới thiệu đến quý thầy, cô và các em học sinh tài liệu tổng ôn cực trị số phức do tác giả Phạm Minh Tuấn biên soạn. Tài liệu gồm 68 trang tuyển chọn các bài toán trắc nghiệm cực trị số phức tiêu biểu trong các đề thi thử THPT Quốc gia môn Toán của các trường THPT, trường chuyên và sở GD&ĐT, các bài toán đều có đáp án và lời giải chi tiết. [ads] Trích dẫn nội dung tài liệu tổng ôn cực trị số phức – Phạm Minh Tuấn : + (Toán Học Tuổi Trẻ 01/2019) Cho số phức z thoả mãn |z – 3 – 4i| = √5. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 2|^2 – |z – i|^2. Tính môđun của số phức w = M + mi. + (THPT Lý Thường Kiệt – Bắc Ninh) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(4;4) và M là điểm biển diễn số phức z thoả mãn điều kiện |z – 1| = |z + 2 – i|. Tìm toạ độ điểm M để đoạn thẳng AM nhỏ nhất. + (THPT Chuyên Hà Tĩnh) Cho số phức z thỏa mãn |z + 3i| + |z – 3i| = 10. Gọi M1, M2 lần lượt là điểm biểu diễn số phức z có môđun lớn nhất và nhỏ nhất. Gọi M là trung điểm của M1M2, M(a;b) biểu diễn số phức w, tổng |a| + |b| nhận giá trị nào sau đây?

Nguồn: toanmath.com

Đăng nhập để đọc

Bài toán GTLN - GTNN của môđun số phức
Bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất (viết tắt là GTLN – GTNN hoặc min – max) của biểu thức có chứa môđun số phức là một dạng toán vận dụng cao thường gặp trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây, đây là dạng toán ít được đề cập đến trong sách giáo khoa Giải tích 12, do đó đã gây không ít bỡ ngỡ và khó khăn cho các bạn học sinh trong quá trình tiếp cận và tìm hướng giải quyết bài toán. Nhằm giúp bạn đọc nắm được một số phương pháp điển hình để giải bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của biểu thức có chứa mô đun của số phức, giới thiệu tài liệu bài toán GTLN – GTNN của môđun số phức. Khái quát nội dung tài liệu bài toán GTLN – GTNN của môđun số phức: A. BÀI TOÁN CỰC TRỊ CỦA SỐ PHỨC 1. Các bài toán qui về bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm một biến. Bài toán: Trong các số phức z thoả mãn điều kiện T. Tìm số phức z để biểu thức P đạt giá trị nhỏ nhất, lớn nhất. Từ điều kiện T biến đổi để tìm cách rút ẩn rồi thế vào biểu thức P để được hàm một biến. Tìm giá trị lớn nhất (hoặc nhỏ nhất) tuỳ theo yêu cầu bài toán của hàm số một biến vừa tìm được. [ads] 2. Các bài toán qui về bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của một biểu thức hai biến mà các biến thoả mãn điều kiện cho trước. Để giải được lớp bài toán này, chúng tôi cung cấp cho học sinh các bất đẳng thức cơ bản như: Bất đẳng thức liên hệ giữa trung bình cộng và trung bình nhân, bất đẳng thức Bunhiacốpxki, bất đẳng thức hình học và một số bài toán công cụ sau: a. Bài toán công cụ 1 : Cho đường tròn (T) cố định có tâm I bán kính R và điểm A cố định. Điểm M di động trên đường tròn (T). Hãy xác định vị trí điểm M sao cho AM lớn nhất, nhỏ nhất. b. Bài toán công cụ 2 : Cho hai đường tròn (T1) có tâm I, bán kính R1, đường tròn (T2) có tâm J, bán kính R2. Tìm vị trí của điểm M trên (T1), điểm N trên (T2) sao cho MN đạt giá trị lớn nhất, nhỏ nhất. c. Bài toán công cụ 3 : Cho hai đường tròn (T) có tâm I, bán kính R, đường thẳng ∆ không có điểm chung với (T). Tìm vị trí của điểm M trên (T), điểm N trên ∆ sao cho MN đạt giá trị nhỏ nhất. B. BÀI TẬP MIN – MAX MÔ ĐUN SỐ PHỨC C. LỜI GIẢI CHI TIẾT
Trắc nghiệm VD - VDC số phức - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 4 – số phức, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề số phức. Tài liệu trắc nghiệm VD – VDC số phức – Đặng Việt Đông gồm 108 trang với các bài tập trắc nghiệm số phức ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về số phức được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC số phức – Đặng Việt Đông: A – LÝ THUYẾT CHUNG 1. Số phức. 2. Phép cộng trừ nhân chia số phức. 3. Tập hợp điểm biểu diễn số phức. 4. Phương trình bậc hai với hệ số thực. 5. Bài toán liên quan đến max – min mô đun số phức. B – BÀI TẬP TRẮC NGHIỆM Dạng 1. Tính toán và các yếu tố trên số phức. Dạng 2. Phương trình, hệ phương trình trên số phức. Dạng 3. Tìm tập hợp điểm, biểu diễn số phức. + Điểm biểu diễn. + Tập hợp điểm biểu diễn là đường thẳng. + Tập hợp điểm biểu diễn là đường tròn. + Tập hợp điểm biểu diễn là hình tròn. + Tập hợp điểm biểu diễn là đường cônic. + Tập hợp điểm biểu diễn là đường cong. + Tập hợp điểm biểu diễn liên quan đa giác. Dạng 4. Số phức có mođun nhỏ nhất, lớn nhất. + Mođun min, max của số phức có tập hợp biểu diễn là đường đường thẳng. + Mođun min, max của số phức có tập hợp biểu diễn là đường tròn, hình tròn. + Mođun min, max của số phức có tập hợp biểu diễn là elip. Dạng 5. Min, max số phức phương pháp đại số. + Áp dụng các tính chất bất đẳng thức, đánh giá. + Áp dụng các bất đẳng thức bunhiacopxki. + Áp dụng phương pháp hàm số. Dạng 6. Min, max số phức phương pháp hình học. Xem thêm : + Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông + Trắc nghiệm VD – VDC nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông
Các dạng toán số phức thường gặp trong kỳ thi THPTQG
Tài liệu gồm 97 trang được biên soạn và giới thiệu bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các dạng toán số phức thường gặp trong kỳ thi THPT Quốc gia môn Toán, có đáp án, phân tích và lời giải chi tiết. Tài liệu bổ trợ thầy, cô giáo trong quá trình dạy và các em học sinh lớp 12 trong quá trình học chương trình Giải tích 12 chương 4, cũng như ôn luyện để hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán. Khái quát nội dung tài liệu các dạng toán số phức thường gặp trong kỳ thi THPTQG: VẤN ĐỀ 1 . KHÁI NIỆM SỐ PHỨC – CÁC PHÉP TOÁN SỐ PHỨC VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN. Dạng toán 1. Xác định các yếu tố cơ bản của số phức. + Dạng toán 1.1 Xác định phần thực, phần ảo của số phức. + Dạng toán 1.2 Xác định số phức liên hợp, số phức đối, môđun của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Thực hiện các phép tính cộng, trừ, nhân, chia cơ bản của số phức. + Dạng toán 3.1 Phép tính cộng trừ hai số phức. + Dạng toán 3.2 Phép tính nhân, chia hai số phức. Dạng toán 4. Tìm số phức thỏa mãn điều kiện cho trước. + Dạng toán 4.1 Điều kiện cho trước không chứa yếu tố môđun. + Dạng toán 4.2 Điều kiện cho trước chứa yếu tố môđun. [ads] VẤN ĐỀ 2 . BÀI TOÁN TÌM TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC. Dạng toán 1. Tập hợp điểm biểu diễn số phức là đường tròn. Dạng toán 2. Tập hợp điểm biểu diễn số phức là đường thẳng. Dạng toán 3. Tập hợp điểm biểu diễn số phức là đường conic. Dạng toán 4. Tập hợp điểm biểu diễn số phức là một miền. VẤN ĐỀ 3 . PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC – BÀI TOÁN MIN – MAX SỐ PHỨC. Dạng toán 1. Phương trình bậc hai với hệ số thực. Dạng toán 2. Bài toán min – max số phức.
Số phức và một số ứng dụng - Nguyễn Tài Chung
Tài liệu gồm 45 trang được biên soạn bởi thầy giáo Nguyễn Tài Chung (giáo viên Toán trường THPT Chuyên Hùng Vương, tỉnh Gia Lai) giới thiệu một số ứng dụng của số phức trong việc giải các bài toán liên quan đến chứng minh bất đẳng thức, giải phương trình, hệ phương trình, phương trình hàm đa thức. Khái quát nội dung tài liệu số phức và một số ứng dụng – Nguyễn Tài Chung: BÀI 1 . SỐ PHỨC VÀ MỘT VÀI ỨNG DỤNG • Sử dụng số phức chứng minh bất đẳng thức Ta xét một số ví dụ về dùng số phức để chứng minh bất đẳng thức. Đây là phương pháp rất độc đáo, thú vị, dùng cái ảo để chứng minh cái thực. • Sử dụng số phức giải phương trình, hệ phương trình Một phương trình nghiệm phức f(z) = 0, với z = x + iy, ta biến đổi thành: h(x,y) + ig(x,y) = 0 ⇔ h(x,y) = 0 và g(x,y) = 0. Nghĩa là một phương trình nghiệm phức, bằng cách tách phần thực và phần ảo luôn có thể đưa về hệ phương trình. • Hệ lặp sinh bởi các đa thức đối xứng ba biến • Sử dụng số phức để giải phương trình hàm đa thức Nghiệm của đa thức đóng vai trò quan trọng trong việc xác định một đa thức. Cụ thể, nếu đa thức P(x) bậc n (n ∈ N*) có n nghiệm x1, x2, . . . , xn thì P(x) có dạng P(x) = c(x − x1)(x − x2). . .(x − xn). Tuy nhiên nếu chỉ xét các nghiệm thực thì trong nhiều trường hợp sẽ không đủ số nghiệm. Hơn nữa trong bài toán phương trình hàm đa thức, nếu chỉ xét các nghiệm thực thì lời giải sẽ không hoàn chỉnh. Định lí cơ bản của đại số vì vậy đóng một vai trò hết sức quan trọng trong dạng toán này.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6