Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán

giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu chuyên đề phương pháp tọa độ trong không gian Oxyz (Hình học 12 chương 3) nhằm bổ trợ cho các em học sinh khối 12 trong quá trình ôn thi THPT Quốc gia môn Toán. Tài liệu gồm 182 trang được biên soạn bởi thầy Lê Văn Đoàn phân dạng và tuyển chọn các bài toán thuộc các chủ đề: hệ trục tọa độ trong không gian, phương trình mặt phẳng, phương trình đường thẳng. Mục lục tài liệu chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán: BÀI 1 . HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN. + Dạng toán 1. Bài toán liên quan đến véctơ và độ dài đoạn thẳng (Trang 3). + Dạng toán 2. Bài toán liên quan đến trung điểm và trọng tâm (Trang 4). + Dạng toán 3. Bài toán liên quan đến hai véctơ bằng nhau (Trang 5). + Dạng toán 4. Hai véctơ cùng phương và ba điểm thẳng hàng (Trang 8). + Dạng toán 5. Nhóm bài toán liên quan đến hình chiếu và điểm đối xứng (Trang 9). + Dạng toán 6. Bài toán liên quan đến tích vô hướng (Trang 17). + Dạng toán 7. Bài toán liên quan đến tích có hướng (Trang 19). + Dạng toán 8. Xác định các yếu tố cơ bản của mặt cầu (Trang 23). + Dạng toán 8. Viết phương trình mặt cầu dạng cơ bản (Trang 25). [ads] BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của mặt phẳng (Trang 44). + Dạng toán 2. Khoảng cách, góc và vị trí tương đối (Trang 45). + Dạng toán 2. Viết phương trình mặt phẳng (Trang 55). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của đường thẳng (Trang 81). + Dạng toán 2. Góc (Trang 83). + Dạng toán 3. Khoảng cách (Trang 86). + Dạng toán 4. Vị trí tương đối (Trang 88). + Dạng toán 5. Viết phương trình đường thẳng (Trang 105). + Dạng toán 6. Hình chiếu, điểm đối xứng và bài toán liên quan (Trang 139). + Dạng toán 7. Bài toán cực trị và một số bài toán khác (Trang 155).

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề phương pháp tọa độ trong không gian - Phạm Hùng Hải
Tài liệu gồm 97 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3. CHƯƠNG 3 . HÌNH HỌC KHÔNG GIAN OXYZ 1. BÀI 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN 1. A Định nghĩa hệ trục tọa độ 1. B Tọa độ véc-tơ 1. C Tọa độ điểm 2. D Tích có hướng của hai véc-tơ 2. E Phương trình mặt cầu 3. BÀI 2. PHƯƠNG TRÌNH MẶT PHẲNG 25. A Kiến thức cơ bản cần nhớ 25. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 49. A Kiến thức cơ bản cần nhớ 49. B Xác định các yếu tố cơ bản của đường thẳng 51. C Góc 53. D Khoảng cách 54. E Vị trí tương đối 55. + Dạng 1. Vị trí tương đối giữa đường thẳng và mặt phẳng 56. + Dạng 2. Vị trí giữa đường thẳng và mặt cầu 58. + Dạng 3. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG THẲNG 59. F Viết phương trình đường thẳng 60. G Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao) 73. H Bài toán cực trị và một số bìa toán khác (vận dụng cao) 81. + Dạng 4. Tâm tỉ cự 81. + Dạng 5. Bài toán cực trị liên quan đến thẳng hàng 85.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt
Tài liệu gồm 120 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, bao gồm lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3. Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. §1 – HỆ TỌA ĐỘ TRONG KHÔNG GIAN 1. A Tóm tắt lý thuyết 1. + Dạng 1. Sự cùng phương của hai véc-tơ. Ba điểm thẳng hàng 4. + Dạng 2. Tìm tọa độ điểm thỏa điều kiện cho trước. 11. + Dạng 3. Một số bài toán về tam giác 17. §2 – PHƯƠNG TRÌNH MẶT PHẲNG 23. A Tóm tắt lí thuyết 23. B Các dạng toán 24. + Dạng 1. Sự đồng phẳng của ba vec-tơ, bốn điểm đồng phẳng 24. + Dạng 2. Diện tích của tam giác 30. + Dạng 3. Thể tích khối chóp 31. + Dạng 4. Thể tích khối hộp 32. + Dạng 5. Lập phương trình mặt phẳng đi qua một điểm và có vectơ pháp tuyến cho trước 33. + Dạng 6. Lập phương trình mặt phẳng trung trực của đoạn thẳng 34. + Dạng 7. Lập phương trình mặt phẳng đi qua một điểm và có cặp vectơ chỉ phương cho trước 34. + Dạng 8. Lập phương trình mặt phẳng đi qua một điểm và song song mặt phẳng cho trước 35. + Dạng 9. Lập phương trình mặt phẳng đi qua ba điểm phân biệt không thẳng hàng 36. + Dạng 10. Lập phương trình mặt phẳng đi qua một điểm và vuông góc với đường thẳng đi qua hai điểm cho trước 37. + Dạng 11. Lập phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cắt nhau cho trước 38. + Dạng 12. Lập phương trình mặt phẳng đi qua hai điểm và vuông góc với một mặt phẳng cắt nhau cho trước 38. + Dạng 13. Lập phương trình mặt phẳng tiếp xúc với mặt cầu tại điểm cho trước 39. + Dạng 14. Viết phương trình của mặt phẳng liên quan đến mặt cầu và khoảng cách 39. + Dạng 15. Viết phương trình mặt phẳng liên quan đến góc hoặc liên quan đến tam giác46. + Dạng 16. Các dạng khác về viết phương trình mặt phẳng 50. + Dạng 17. Ví trí tương đối của hai mặt phẳng 54. + Dạng 18. Vị trí tương đối của mặt phẳng và mặt cầu 56. + Dạng 19. Tính khoảng cách từ một điểm đến một mặt phẳng. Tìm hình chiếu của một điểm trên mặt phẳng. Tìm điểm đối xứng của một điểm qua mặt phẳng 58. + Dạng 20. Tìm tọa độ hình chiếu của điểm trên mặt phẳng. Điểm đối xứng qua mặt phẳng 60. §3 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN 64. A Tóm tắt lí thuyết 64. B Các dạng toán 64. + Dạng 1. Viết phương trình đường thẳng khi biết một điểm thuộc nó và một véc-tơ chỉ phương 64. + Dạng 2. Viết phương trình của đường thẳng đi qua hai điểm cho trước 66. + Dạng 3. Viết phương trình đường thẳng đi qua điểm M cho trước và vuông góc với mặt phẳng (α) cho trước 66. + Dạng 4. Viết phương trình đường thẳng đi qua điểm M và song song với một đường thẳng cho trước 68. + Dạng 5. Đường thẳng d đi qua điểm M và song song với hai mặt phẳng cắt nhau (P) và (Q) 69. + Dạng 6. Đường thẳng d qua M song song với mp(P) và vuông góc với d0 (d0 không vuông góc với ∆) 71. + Dạng 7. Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng chéo nhau d1 và d2 73. + Dạng 8. Viết phương trình đường thẳng đi qua điểm A đồng thời cắt cả hai đường thẳng d1 và d2 77. + Dạng 9. Viết phương trình đường thẳng đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2 80. + Dạng 10. Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1 82. + Dạng 11. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt cả hai đường thẳng d1 và d2 84. + Dạng 12. Viết phương trình đường thẳng d song song với đường thẳng d0 đồng thời cắt cả hai đường thẳng d1 và d2 86. + Dạng 13. Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song cho trước và nằm trong mặt phẳng chứa hai đường thẳng đó 88. + Dạng 14. Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng chéo nhau cho trước 90. + Dạng 15. Viết phương trình tham số của đường thẳng d0 là hình chiếu của đường thẳng d trên mặt phẳng (P) 93. §4 – ĐỀ KIỂM TRA CHƯƠNG III 96. A Đề số 1a 96. B Đề số 1b 98. C Đề số 2a 100. D Đề số 2b 102. E Đề số 3a 104. F Đề số 3b 108. G Đề số 4a 110. H Đề số 4b 113.
Bài giảng phương trình đường thẳng
Tài liệu gồm 45 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình đường thẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững khái niệm vectơ chỉ phương của đường thẳng, góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. + Trình bày và vận dụng được các công thức tính khoảng cách, góc. + Trình bày được cách viết phương trình tham số của đường thẳng. + Trình bày được các vị trí tương đối của hai đường thẳng, của đường thẳng và mặt phẳng và của đường thẳng với mặt cầu. Vận dụng được các công thức để xét vị trí tương đối của hai đường thẳng; của đường thẳng với mặt phẳng và của đường thẳng với mặt cầu. Kĩ năng : + Biết cách viết phương trình tham số, phương trình chính tắc của đường thẳng. + Biết cách tính khoảng cách, tính góc. + Biết cách xét vị trí tương đối của hai đường thẳng, vị trí tương đối của đường thẳng với mặt phẳng và vị trí tương đối của đường thẳng với mặt cầu. I. LÍ THUYẾT TRỌNG TÂM I. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1: Xác định vectơ chỉ phương của đường thẳng. – Bài toán 2: Viết phương trình đường thẳng khi tìm được một vectơ chỉ phương và điểm thuộc đường thẳng. – Bài toán 3: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 2 : Các vấn đề về góc. – Bài toán 1: Góc giữa đường thẳng và mặt phẳng. – Bài toán 2: Góc giữa hai đường thẳng. Dạng 3 : Khoảng cách. – Bài toán 1: Khoảng cách từ một điểm đến đường thẳng. – Bài toán 2: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 4 : Vị trí tương đối. – Bài toán 1: Vị trí tương đối giữa đường thẳng và mặt phẳng. – Bài toán 2: Vị trí tương đối giữa hai đường thẳng. – Bài toán 3: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 5 : Một số bài toán cực trị.
Bài giảng phương trình mặt phẳng
Tài liệu gồm 29 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mặt phẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm được cách xác định mặt phẳng, vectơ pháp tuyến của mặt phẳng. + Nắm được công thức tính khoảng cách từ điểm đến mặt phẳng, góc giữa hai mặt phẳng. + Nhận biết được vị trí tương đối giữa đường thẳng với mặt phẳng, giữa mặt phẳng với mặt cầu. Kĩ năng : + Viết được phương trình tổng quát của mặt phẳng. + Xác định được vectơ pháp tuyến trong các trường hợp. + Tính được khoảng cách và góc. + Xác định được vị trí tương đối và vận dụng vào giải bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một vectơ pháp tuyến. – Bài toán 2. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một cặp vectơ chỉ phương. – Bài toán 3. Lập phương trình mặt phẳng liên quan đến khoảng cách. – Bài toán 4. Viết phương trình mặt phẳng liên quan đến mặt cầu. – Bài toán 5. Phương trình mặt phẳng đoạn chắn. Dạng 2 : Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. – Bài toán 1. Vị trí tương đối giữa hai mặt phẳng. – Bài toán 2. Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 3 : Khoảng cách từ một điểm đến mặt phẳng. Dạng 4 : Góc giữa hai mặt phẳng. Dạng 5 : Một số bài toán cực trị.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6