Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm Toán 8 Chân Trời Sáng Tạo học kì 1

Tài liệu gồm 73 trang, phân dạng và tuyển chọn các bài tập Toán 8 Chân Trời Sáng Tạo học kì 1, hỗ trợ quý thầy, cô giáo trong quá trình dạy thêm Toán 8 CTST (tập 1). Chương 1 : BIỂU THỨC ĐẠI SỐ. Bài 1. Đơn thức và đa thức nhiều biến. Bài 2. Các phép toán với đa thức nhiều biến. Bài 3. Hằng đẳng thức đáng nhớ. Bài 4. Phân tích đa thức thành nhân tử. Bài 5. Phân thức đại số. Bài 6. Cộng, trừ phân thức. Bài 7. Nhân, chia phân thức. Bài tập cuối chương 1. Chương 2 : CÁC HÌNH KHỐI TRONG THỰC TIỄN. Bài 1. Hình chóp tam giác đều – Hình chóp tứ giác đều. Bài 2. Diện tích xung quanh và thể tích của hình chóp tam giác đều, hình chóp tứ giác đều. Bài tập cuối chương 2. Chương 3 : ĐỊNH LÍ PYTHAGORE. CÁC LOẠI TỨ GIÁC THƯỜNG GẶP. Bài 1. Định lí Pythagore. Bài 2. Tứ giác. Bài 3. Hình thang – Hình thang cân. Bài 4. Hình bình hành – Hình thoi. Bài 5. Hình chữ nhật – Hình vuông. Bài tập cuối chương 3. Chương 4 : MỘT SỐ YẾU TỐ THỐNG KÊ. Bài 1. Thu thập và phân loại dữ liệu. Bài 2. Lựa chọn dạng biểu đồ để biểu diễn dữ liệu. Bài 3. Phân tích dữ liệu. Bài tập cuối chương 4.

Nguồn: toanmath.com

Đăng nhập để đọc

Lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức
Tài liệu gồm 59 trang, tóm tắt lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 1. Bài 1. Nhân đơn thức với đa thức. Bài 2. Nhân đa thức với đa thức. + Dạng 1. Làm tính nhân. + Dạng 2. Tính giá trị của biểu thức. + Dạng 3. Rút gọn biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. + Dạng 6. Giải toán bằng cách đặt ẩn x. + Dạng 7. Chứng minh đẳng thức. + Dạng 8. Áp dụng vào số học. + Dạng 9. Đa thức đồng nhất bằng nhau. Bài 3 – Bài 4 – Bài 5. Những hằng đẳng thức đáng nhớ. + Dạng 1. Áp dụng các hằng đẳng thức đáng nhớ để tính. + Dạng 2. Chứng minh đẳng thức. + Dạng 3. Tính nhanh. + Dạng 4. Rút gọn biểu thức và tính giá trị của biểu thức. + Dạng 5. Điền vào ô trống các hạng từ thích hợp. + Dạng 6. Biểu diễn đa thức dưới dạng bình phương, lập phương của một tổng (một hiệu). + Dạng 7. Một số hằng đẳng thức tổng quát. Bài 6 – Bài 7 – Bài 8 – Bài 9. Phân tích đa thức thành nhân tử. + Dạng 1. Phân tích đa thức thành nhân tử. + Dạng 2. Tính nhanh. + Dạng 3. Tính giá trị của biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Áp dụng vào số học. + Dạng 6. Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức cho trước. + Dạng 7. Phương pháp đặt ẩn phụ. + Dạng 8. Phương pháp hệ số bất định. + Dạng 9. Chứng minh đẳng thức. + Dạng 10. Chứng minh bất đẳng thức. Bài 10. Chia đơn thức cho đơn thức. Bài 11. Chia đa thức cho đơn thức. + Dạng 1. Làm tính chia. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Không làm tính chia, xét xem đa thức a có chia hết cho đơn thức b không? Bài 12. Chia đa thức một biến đã sắp xếp. + Dạng 1. Thực hiện phép chia đa thức. + Dạng 2. Tính nhanh. + Dạng 3. Áp dụng định lí Bézout để phân tích đa thức ra thừa số. + Dạng 4. Tìm số nguyên n để biểu thức a(n) chia hết cho biểu thức b(n). + Dạng 5. Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng. + Dạng 6. Tìm các hệ số để đa thức f(x) chia hết cho g(x). + Dạng 7. Tìm dư trong phép chia đa thức. Ôn tập chương I. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Phương pháp phân tích đa thức thành nhân tử
Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI
Các hằng đẳng thức đáng nhớ và ứng dụng
Tài liệu gồm 59 trang, tuyển tập các hằng đẳng thức đáng nhớ và ứng dụng trong giải toán, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số. A. Một số kiến thức cần nhớ 1. Nhắc lại những hằng đẳng thức đáng nhớ. + Bình phương của một tổng. + Bình phương của một hiệu. + Hiệu của hai bình phương. + Lập phương của tổng. + Lập phương của hiệu. + Tổng hai lập phương. + Hiệu hai lập phương: 2. Một số hằng đẳng thức tổng quát. 3. Nhị thức Newton. B. Một số ví dụ minh họa Với các hẳng đẳng thức đáng nhớ cũng như các hẳng đẳng thức mở rộng ta có thể áp dụng khi giải một số dạng bài tập toán như sau: + Áp dụng trực tiếp các hằng đẳng thức để thực hiện tính phép tính, tính giá trị các biểu thức số. + Áp dụng các hằng đẳng thức để thu gọn biểu thức và chứng minh các đẳng thức. + Áp dụng các hằng đẳng thức để giải bài toán tìm giá trị của biến. Xác định hệ số của đa thức. + Bài toán tính giá trị biểu thức với các biến có điều kiện. + Chứng minh bất đẳng thức và bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức đại số. + Áp dụng các hằng đẳng thức để giải một số bài toán số học và tổ hợp. C. Một số bài tập tự luyện D. Hướng dẫn giải
Một số chuyên đề bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 251 trang, tuyển tập một số chuyên đề bồi dưỡng học sinh giỏi Toán 8, hỗ trợ học sinh trong quá trình ôn tập chuẩn bị cho kỳ thi chọn học sinh giỏi Toán 8 các cấp (cấp trường, cấp quận / huyện, cấp thành phố / tỉnh …). CHỦ ĐỀ 1 . HẰNG ĐẲNG THỨC. + Các hằng đẳng thức cơ bản. + Các hằng đẳng thức mở rộng hay sử dụng. CHUYÊN ĐỀ 2 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ. + Phương pháp tách hạng tử. + Phương pháp nhóm hạng tử. + Phương pháp dùng hằng đẳng thức. + Phương pháp thêm, bớt cùng một hạng tử. + Phương pháp đổi biến. + Phương pháp hệ số bất định. + Đối với đa thức đa ẩn. + Các ứng dụng của phân tích đa thức thành nhân tử. CHUYÊN ĐỀ 3 . GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC. + Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. + Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. + Đa thức có từ hai biến trở lên. + Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. + Phương pháp đổi biến số. + Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. + Dạng phân thức. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐẠI SỐ. + Phương trình bậc nhất một ẩn. + Bất phương trình bậc nhất một ẩn. + Phương trình bậc cao. CHUYÊN ĐỀ 5 . ĐỒNG NHẤT THỨC. + Các bài toán về biểu thức nguyên. + Các dạng toán về phân thức đại số. + Rút gọn biểu thức. + Biểu thức có tính quy luật. CHUYÊN ĐỀ 6 . BẤT ĐẲNG THỨC. + Dùng định nghĩa và các phép biến đổi tương đương. + Dùng các phép biến đổi tương đương. + Bất đẳng thức dạng nghịch đảo (Cô-si cộng mẫu). + Dùng các bất đẳng thức phụ. + Phương pháp phản chứng. CHUYÊN ĐỀ 7 . ĐA THỨC. + Tính chia hết của đa thức. + Phần dư trong phép chia đa thức. + Dùng phương pháp xét giá trị riêng để tìm hệ số của một đa thức. + Đặt phép chia để tìm hệ số. CHUYÊN ĐỀ 8 . HÌNH HỌC. + Hình thang, hình thang cân. + Đường trung bình của tam giác, hình thang. + Đối xứng trục, đối xứng tâm. + Hình bình hành. + Hình chữ nhật. + Hình thoi. + Hình vuông. + Các bài tập tổng hợp về tứ giác đặc biệt. Xem thêm : Đề thi HSG Toán 8

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6