Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 1 Toán 12 năm 2023 - 2024 trường THPT Triệu Sơn 4 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Triệu Sơn 4, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề KSCL lần 1 Toán 12 năm 2023 – 2024 trường THPT Triệu Sơn 4 – Thanh Hóa : + Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí. + Anh An mới đi làm, hưởng lương 8 triệu đồng một tháng và sẻ được nhận lương vào cuối tháng làm việc. An kí hợp đồng với ngân hàng trích tự động 1 10 tiền lương của mình mỗi tháng để gửi vào tài khoản tiết kiệm, lãi suất 0,45%/tháng theo thể thức lãi kép. Kể từ tháng thứ 7, anh An được tăng lương lên mức 8 triệu 500 nghìn đồng mỗi tháng. Sau một năm đi làm, tài khoản tiết kiệm của anh An có bao nhiêu tiền ( Đơn vị: triệu đồng, kết quả lấy đến 3 chữ số sau dấu phẩy). + Trong không gian cho hai đường thẳng chéo nhau d và ∆ vuông góc với nhau và nhận AB = a làm đoạn vuông góc chung (A d B ∆). Trên d lấy điểm M, trên ∆ lấy điểm N sao cho AM a BN a 24. Gọi I là tâm mặt cầu ngoại tiếp tứ diện ABMN. Khoảng cách giữa hai đường thẳng AM và BI là?

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi xếp lớp Toán 12 năm 2019 - 2020 trường Nguyễn Viết Xuân - Vĩnh Phúc
Nhằm phân loại học sinh khối 12 vào các lớp học phù hợp với năng lực học tập của mỗi em, vừa qua, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng đầu năm môn Toán 12 năm học 2019 – 2020. Đề thi xếp lớp Toán 12 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc với mã đề 001 gồm 05 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan với 50 câu hỏi và bài toán, kiến thức kiểm tra thuộc chương trình Toán 10 và Toán 11, thời gian học sinh làm bài khảo sát là 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi xếp lớp Toán 12 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Một nhóm học sinh trường THPT Nguyễn Viết Xuân, Vĩnh Phúc gồm bốn bạn nam trong đó có bạn Quân và bốn bạn nữ trong đó có bạn Lan. Xếp ngẫu nhiên tám bạn trên thành một hàng dọc. Xác suất để xếp được hàng dọc thỏa mãn các điều kiện: Đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ đồng thời bạn Quân và bạn Lan không đứng cạnh nhau bằng? + Cho tứ diện ABCD có AB = 3a, AC = a√15, BD = a√10, CD = 4a. Biết rằng góc giữa đường thẳng AD và mặt phẳng (BCD) bằng 45 độ, khoảng cách giữa hai đường thẳng AD và BC bằng 5a/4 và hình chiếu của A lên mặt phẳng (BCD) nằm trong tam giác BCD. Tính độ dài đoạn thẳng AD. + Cho phương trình: (cos4x – cos2x + 2(sinx)^2)/(cosx + sinx) = 0. Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác.
Đề khảo sát đầu năm Toán 12 năm 2019 - 2020 trường Yên Phong 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi khảo sát chất lượng đầu năm học môn Toán lớp 12 năm học 2019 – 2020 trường THPT Yên Phong số 2, tỉnh Bắc Ninh, kỳ thi nhằm kiểm tra lại các kiến thức Toán 11 mà học sinh đã được học, nhằm tạo tiền đề trước khi các em bắt đầu tìm hiểu những nội dung kiến thức mới trong chương trình môn Toán 12. Đề khảo sát đầu năm Toán 12 năm 2019 – 2020 trường Yên Phong 2 – Bắc Ninh có mã đề 132, đề thi gồm 6 trang, đề được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, năm nay các em cũng sẽ bước vào năm học cuối cùng ở cấp bậc THPT trước khi bước vào kỳ thi THPT Quốc gia môn Toán, do đó việc làm quen với đề toán dạng trắc nghiệm là cần thiết, đề thi có đáp án các mã đề. [ads] Trích dẫn đề khảo sát đầu năm Toán 12 năm 2019 – 2020 trường Yên Phong 2 – Bắc Ninh : + Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lí thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất một câu lí thuyết và 1 câu bài tập. Hỏi có thể tạo được bao nhiêu đề khác nhau? + Trong các mệnh đề dưới đây, mệnh đề nào sai? A. Hình chóp tứ giác đều có các cạnh bên bằng nhau. B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tứ giác đều có đáy là hình vuông. D. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh lên đáy trùng với tâm của đáy. + Người ta sử dụng 7 cuốn sách Toán, 8 cuốn sách Vật lí, 9 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Tâm và Huy. Tính xác suất để hai bạn Tâm và Huy có phần thưởng giống nhau.
Đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 Bắc Ninh
Nhằm giúp học sinh lớp 11 lên lớp 12 được ôn lại kiến thức Toán 11 trước khi các em bước vào năm học mới 2019 – 2020, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng ôn tập hè năm 2019 môn Toán lớp 12. Đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 – Bắc Ninh có mã đề 157, đề thi được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, đáp ứng đúng yêu cầu thi toán trắc nghiệm theo tinh thần của Bộ Giáo dục và Đào tạo, học sinh làm bài trong 90 phút, đề thi có đáp án mã đề 157, 261, 335, 436. [ads] Trích dẫn đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 – Bắc Ninh : + Một nhóm học sinh lớp 5 gồm học sinh của lớp 5A, 5B, 5C. Trong đó lớp 5A có 1 em, lớp 5B có 4 em, lớp 5C có 3 em. Nhà trường chọn ngẫu nhiên 5 học sinh đi thi nghi thức Đội cấp huyện. Tính xác suất để chọn được học sinh của cả 3 lớp. + Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Mệnh đề nào dưới đây đúng? A. Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b). B. Nếu phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b) thì f(a).f(b) < 0. C. Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 không có nghiệm nằm trong (a;b). D. Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b). + Một nhóm có 10 học sinh giỏi, giáo viên chủ nhiệm cần chọn 4 em đi tham dự buổi lễ khen thưởng cuối năm do Huyện tổ chức. Hỏi có bao nhiêu cách chọn?
Đề kiểm tra cuối hè năm 2019 môn Toán 12 trường THPT chuyên Bắc Ninh
Cuối kỳ nghỉ hè năm 2019 (khoảng giữa tháng 8 năm 2019), khi học sinh khối 12 bắt đầu tập trung đến trường để chuẩn bị cho năm học 2019 – 2020, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng cuối kỳ nghỉ hè để kiểm tra lại kiến thức môn Toán 11 học sinh đã học từ năm học trước, qua đó có sự chuẩn bị tốt để tiếp thu kiến thức Toán 12. Đề kiểm tra cuối hè năm 2019 môn Toán 12 trường THPT chuyên Bắc Ninh với mã đề 101, đề được biên soạn theo dạng đề trắc nghiệm khách quan, đề gồm 50 câu hỏi và bài toán bao quát toàn bộ chương trình Toán 11, học sinh làm bài khảo sát chất lượng trong khoảng thời gian 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104, 105, 106, 107, 108. [ads] Trích dẫn đề kiểm tra cuối hè năm 2019 môn Toán 12 trường THPT chuyên Bắc Ninh : + Mệnh đề nào sau đây là đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường còn lại. B. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. C. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường còn lại. D. Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt đáy. Chọn khẳng định sai trong các khẳng định sau: A. Hai mặt phẳng (SAB) và (SAD) vuông góc với nhau. B. Đường thẳng DC vuông góc với mặt phẳng (SAD). C. AD là đoạn vuông góc chung của SA và DC. D. Góc giữa đường thẳng SC và mặt phẳng (ABCD) là ASC. + Biết rằng đồ thị hàm số y = f(x) = ax^4 + bx^3 + cx^2 + dx + e (a, b, c, d, e thuộc R, a khác 0 và b khác 0) cắt trục hoành Ox tại 4 điểm phân biệt. Khi đó đồ thị hàm số y = g(x) = (f'(x))^2 – f”(x).f(x) cắt trục hoành Ox tại bao nhiêu điểm?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6