Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hải Dương

Nội dung Đề thi HSG tỉnh lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương Thứ Tư ngày 03 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 10 khối THPT năm học 2018 – 2019. Mục tiêu của kỳ thi là tuyển chọn những em học sinh xuất sắc từ các trường THPT tại Hải Dương để khen thưởng và tạo ra đội tuyển học sinh giỏi môn Toán lớp 10 cấp tỉnh. Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán. Thời gian làm bài thi là 180 phút, đề thi cung cấp lời giải chi tiết và thang điểm. Trích dẫn một số câu hỏi từ đề thi: Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? Cho tam giác nhọn ABC, chứng minh rằng (sinA)^2 + (sinB)^2 + (sinC)^2 = 9/4 khi biết rằng S_ΔABC = 4.S_ΔHEK với H, E, K lần lượt là chân đường cao từ các đỉnh A, B, C. Tính tọa độ các đỉnh A, B, C của tam giác ABC cân tại A khi biết AB: x + y – 3 = 0, AC: x – 7y + 5 = 0 và điểm M(1;1;0) thuộc cạnh BC. Đề thi được thiết kế để kiểm tra khả năng thực hành và hiểu biết sâu sắc của học sinh về các vấn đề Toán học. Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi này.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề HSG Toán 10 lần 14 năm 2023 hội các trường THPT chuyên DHĐB Bắc Bộ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 lần thứ 14 (XIV) năm 2023 hội các trường THPT chuyên vùng Duyên hải và Đồng bằng Bắc Bộ; kỳ thi được diễn ra vào ngày 15 tháng 07 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 10 lần 14 năm 2023 hội các trường THPT chuyên DH&ĐB Bắc Bộ : + Cho tam giác nhọn ABC nội tiếp đường tròn O có AD là đường phân giác trong (D thuộc BC). Gọi E F lần lượt là điểm chính giữa cung CA chứa B, cung AB chứa C của đường tròn O. Đường tròn ngoại tiếp tam giác BDE cắt AB tại M. Đường tròn ngoại tiếp tam giác CDF cắt AC tại N. a) Chứng minh rằng bốn điểm BM NC cùng nằm trên một đường tròn. b) Gọi I là tâm đường tròn ngoại tiếp tam giác AMN. Gọi AP AQ lần lượt là đường kính của đường tròn ngoại tiếp tam giác ABN ACM. Chứng minh rằng các đường thẳng BQ CP AI đồng quy. + Cho số nguyên dương n. Chứng minh rằng nếu tồn tại các số nguyên dương abc sao cho 2027 n a bc b ac thì n là số chẵn. + Một số nguyên dương m được gọi là “tốt” nếu tồn tại các số nguyên dương abcd sao cho mabcdm 49 và ad bc. a) Chứng minh rằng số nguyên dương m là “tốt” khi và chỉ khi tồn tại hai số nguyên dương x y sao cho xy m và (xy m 1 1 49). b) Tìm số “tốt” lớn nhất.
Đề học sinh giỏi Toán 10 THPT năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi (HSG) môn Toán 10 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 111, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 10 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Khi một quả bóng được đá lên từ độ cao 0 h, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và độ cao h của quả bóng được tính bởi công thức 2 0 0 2 h t at v t h trong đó độ cao h và độ cao ban đầu 0 h được tính bằng mét, t là thời gian chuyển động tính bằng giây, a là gia tốc chuyển động tính bằng 2 0 m s v là vận tốc ban đầu tính bằng m s. Biết rằng sau 0,5 giây quả bóng đạt được độ cao 6,075 m; sau 1 giây quả bóng đạt độ cao 8,5 m; sau 2 giây quả bóng đạt độ cao 6 m. Độ cao lớn nhất của quả bóng được đá lên so với mặt đất là (kết quả được làm tròn đến hàng phần chục). + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Cho tam giác ABC có trọng tâm G. Gọi I là trung điểm của cạnh BC và M là điểm thỏa mãn: 2 3 MA MB MC MB MC. Khi đó, tập hợp các điểm M là A. đường trung trực của đoạn thẳng IG. B. đường trung trực của đoạn thẳng BC. C. đường tròn tâm I, bán kính BC. D. đường tròn tâm G, bán kính BC.
Đề học sinh giỏi Toán 10 năm 2022 - 2023 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa môn Toán 10 THPT năm học 2022 – 2023 trường THPT Thị xã Quảng Trị; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12gam hương liệu, 9 lít nước và 315gam đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước A cần 45gam đường, 1 lít nước và 0,5gam hương liệu; để pha chế 1 lít nước B cần 15gam đường, 1 lít nước và 2gam hương liệu. Mỗi lít nước A nhận 60 điểm thưởng, mỗi lít nước B nhận 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB AD 3 và H là hình chiếu vuông góc của B trên CD. Điểm 1 3 2 2 M là trung điểm HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x y 7 0. + Một sa mạc có dạng hình chữ nhật ABCD có DC km 25 CB km 20 và P Q lần lượt là trung điểm của AD BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn PQ rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABQP là 15 km h vận tốc của ngựa khi đi trên phần PQCD là 30 km h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất?
Đề Olympic 30 tháng 4 Toán 10 năm 2023 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic truyền thống 30 tháng 4 môn Toán 10 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề Olympic 30 tháng 4 Toán 10 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Gọi S là tập hợp các số nguyên n (n > 1) sao cho với n số thực bất kỳ thuộc khoảng (−2;2) có tổng bằng 0 thì tổng lũy thừa bậc 4 của chúng luôn nhỏ hơn 32. Chứng minh S = {2;3}. + Tìm giá trị nhỏ nhất của f(x;y) = 2^x − 5^y với x và y là hai số nguyên dương thỏa mãn 2^x >= 5^y. Tìm tất cả các số nguyên dương N có đúng hai ước nguyên tố là 2 và 5, đồng thời N + 4 là số chính phương. + Cho 4 hình vuông đơn vị xếp kề nhau như hình vẽ. Có bao nhiêu cách tô màu 10 đỉnh của các hình vuông đơn vị bởi k màu khác nhau (mỗi đỉnh tô 1 màu) sao cho không có hai đỉnh kề nhau nào cùng màu khi k = 3? k = 10? (trong hình vẽ có tất cả 13 cặp đỉnh kề nhau). Có bao nhiêu cách tô màu 8 đỉnh của hình lập phương bởi 3 màu khác nhau (mỗi đỉnh tô 1 màu) sao cho không có hai đỉnh kề nhau nào cùng màu? (trong hình lập phương có tất cả 12 cặp đỉnh kề nhau).

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6