Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Nguyễn Trọng

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết, giúp học sinh luyện tập khi học chương trình Giải tích 12 chương 2. Mục lục tài liệu chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit – Nguyễn Trọng: Bài 1. Mũ – lũy thừa. + Dạng 1. Tính giá trị biểu thức (Trang 1). + Dạng 2. So sánh các lũy thừa (Trang 3). + Dạng 3. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa (Trang 5). Bài 2. Hàm số lũy thừa. + Dạng 1. Tìm tập xác định của hàm số thức chứa lũy thừa (Trang 9). + Dạng 2. Đạo hàm của hàm số luỹ thừa (Trang 11). + Dạng 3. Tính chất, đồ thị của hàm số luỹ thừa (Trang 14). Bài 3. Logarit. + Dạng 1. Tính giá trị biểu thức (Trang 19). + Dạng 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa logarit, mũ, lũy thừa (Trang 21). + Dạng 3. Biểu diễn các biểu thức chứa logarit theo biểu thức khác (Trang 25). Bài 4. Hàm số mũ – logarit. + Dạng 1. Tìm tập xác định của hàm số mũ, hàm số logarit (Trang 29). + Dạng 2. Đạo hàm của hàm số mũ, logarit (Trang 31). + Dạng 3. Sự biến thiên và đồ thị của hàm số mũ – logarit (Trang 34). + Dạng 4. Tìm GTLN – GTNN của hàm số (Trang 38). + Dạng 5. Toán thực tế (Trang 40). + Dạng 6. Toán tìm tham số m để hàm số xác định (Trang 45). Bài 5. Phương trình mũ. + Dạng 1. Phương trình mũ cơ bản (Trang 50). + Dạng 2. Phương trình mũ đưa về cùng cơ số (Trang 52). + Dạng 3. Đặt ẩn phụ (Trang 54). + Dạng 4. Phương trình chứa tham số m thỏa mãn điều kiện (Trang 57). Bài 6. Phương trình logarit. + Dạng 1. Phương trình logarit cơ bản (Trang 64). + Dạng 2. Phương trình logarit đưa về cùng cơ số (Trang 66). + Dạng 3. Đặt ẩn phụ (Trang 68). + Dạng 4. Phương trình chứa tham số m (Trang 71). Bài 7. Bất phương trình mũ. + Dạng 1. Bất phương trình mũ cơ bản (Trang 77). + Dạng 2. Bất phương trình mũ đặt ẩn phụ (Trang 79). + Dạng 3. Bất phương trình mũ chứa tham số (Trang 82). Bài 8. Bất phương trình logarit. + Dạng 1. Bất phương trình logarit cơ bản (Trang 88). + Dạng 2. Bất phương trình logarit đặt ẩn phụ (Trang 92). + Dạng 3. Bất phương trình logarit chứa tham số (Trang 94).

Nguồn: toanmath.com

Đăng nhập để đọc

Phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ - logarit - Hoàng Thanh Phong
Tài liệu gồm 41 trang, được biên soạn bởi thầy giáo Hoàng Thanh Phong, hướng dẫn phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit (có kết hợp tư duy, mẹo giải nhanh và máy tính Casio), đây là lớp bài toán vận dụng – vận dụng cao (VD – VDC) / nâng cao / khó, nhiều khả năng sẽ xuất hiện trong đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn tài liệu phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit – Hoàng Thanh Phong: + Có bao nhiêu cặp số nguyên (x;y) thỏa mãn 1 ≤ x ≤ 2020 và x + x^2 – 9^y = 3^y. + Có bao nhiêu giá trị nguyên dương của tham số m nhỏ hơn 2018 để phương trình log2 (m + √(m + 2^x)) = 2x có nghiệm thực? + Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn biểu thức sau log4 (x + y + 3) = log5 (x^2 + y^2 + 2x + 4y + 5)? Xem thêm : Phương pháp hàm số đặc trưng – Nguyễn Văn Rin
Bài toán min - max liên quan hàm số mũ - logarit nhiều biến - Đặng Việt Đông
Tài liệu gồm 51 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển chọn và hướng dẫn giải 96 bài toán min – max (giá trị nhỏ nhất – giá trị lớn nhất / GTNN – GTLN) liên quan đến hàm số mũ, hàm số logarit nhiều biến số, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT 2020 môn Toán. Dạng toán 1. Áp dụng đánh giá, áp dụng bất đẳng thức. Dạng toán 2. Áp dụng pháp hàm số, hàm đặc trưng. + Áp dụng hàm số. + Áp dụng hàm đặc trưng. Dạng toán 3. Áp dụng hình học giải tích.
160 câu vận dụng cao mũ - logarit ôn thi THPT môn Toán
Tài liệu gồm 15 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) mũ – logarit có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao mũ – logarit ôn thi THPT môn Toán: + Cho phương trình m ln2 (x + 1) − (x + 2 − m) ln(x + 1) − x − 2 = 0 (1). Tập tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a; +∞). Khi đó a thuộc khoảng? + Cho phương trình e m cos x−sin x − e 2(1−sin x) = 2 − sin x − m cos x với m là tham số thực. Gọi S là tập tất cả các giá trị của m để phương trình có nghiệm. Khi đó S có dạng (−∞; a] ∪ [b; +∞). Tính T = 10a + 20. [ads] + Do có nhiều cố gắng trong học kì I năm học lớp 12, Hoa được bố mẹ cho chọn một phần thưởng dưới 5 triệu đồng. Nhưng Hoa muốn mua một cái laptop 10 triệu đồng nên bố mẹ đã cho Hoa 5 triệu đồng gửi vào ngân hàng (vào 1/1/2019) với lãi suất 1% trên tháng đồng thời ngày đầu tiên mỗi tháng (bắt đầu từ ngày 1/2/2019) bố mẹ sẽ cho Hoa 300000 đồng và cũng gửi tiền vào ngân hàng với lãi suất 1% trên tháng. Biết hàng tháng Hoa không rút lãi và tiền lãi được cộng vào tiền vốn cho tháng sau chỉ rút vốn vào cuối tháng mới được tính lãi của tháng ấy. Hỏi ngày nào trong các ngày dưới đây là ngày gần nhất với ngày 1/2/2019 mà bạn Hoa có đủ tiền để mua laptop?
Phương trình nghiệm nguyên liên quan đến mũ - logarit - Trần Trọng Trị
Tài liệu gồm 27 trang được biên soạn bởi tác giả Trần Trọng Trị (giáo viên Toán tiếp sức chinh phục kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020 trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn phương pháp giải bài toán phương trình nghiệm nguyên liên quan đến mũ – logarit, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong đề thi thử THPT Quốc gia môn Toán. 1. Dạng 1: Có đúng một biến nguyên và rút được biến nguyên này theo biến còn lại. Đến đây, ta xét hàm để tìm miền giá trị cho biến nguyên đó. 2. Dạng 2: Khi phương trình rút gọn là phương trình bậc hai theo biến không nguyên. Ta sử dụngđiều kiện có nghiệm của phương trình bậc hai để tìm miền giá trị cho biến nguyên. 3. Dạng 3: Cả hai biến đều nguyên, trong đó có một biến nguyên thuộc tập K cho trước, với K có thể là một khoảng, một đoạn. Khi đó, ta cũng rút biến nguyên thuộc K theo biến còn lại để tìm miền giá trị cho biến đó. [ads] 4. Dạng 4: Cả hai biến đều nguyên, rút được biến này theo biến kia đưa về bài toán tìm điểm nguyên trên các đường cong đơn giản. 5. Dạng 5: Đưa phương trình về tổng các bình phương của hai biến nguyên. 6. Dạng 6: Đưa về phương trình tích của hai biến nguyên. 7. Dạng 7: Sử dụng tính chất chia hết. 8. Dạng 8: Đếm điểm nguyên trong các hình cơ bản.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6