Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt cầu trong không gian Oxyz - Phạm Văn Long

Tài liệu gồm 28 trang gồm lý thuyết mặt cầu, hướng dẫn phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề mặt cầu trong không gian Oxyz. 1. Tóm tắt lý thuyết, phương trình  mặt cầu và một số công thức tính cơ bản 2. Ví dụ minh họa về 2 dạng toán + Dạng 1: Viết phương trình mặt cầu Thuật toán 1: Bước 1: Xác định tâm I Bước 2: Xác định bán kính R của (S) Bước 3: Mặt cầu (S) có tâm I và bán kính R Thuật toán 2: Gọi phương trình dạng tổng quát của (S), sử dụng các điều kiện để tìm các tham số [ads] Kỹ năng xác định tâm và bán kính của đường tròn trong không gian Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C) Bước 1: Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P) Bước 2: Tâm H của đường tròn (C) là giao điểm của d và mặt phẳng (P) Bước 3: Gọi r là bán kính của (C) + Dạng 2: Sự tương giao và sự tiếp xúc Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I; (α)) = R 3. Bài tập trắc nghiệm tự luyện được sắp xếp theo mức độ phân loại

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề phương pháp tọa độ trong không gian - Huỳnh Đức Khánh
Tài liệu gồm 108 trang được biên soạn bởi thầy Huỳnh Đức Khánh, tóm tắt lý thuyết và tuyển chọn các dạng bài trắc nghiệm chuyên đề phương pháp tọa độ trong không gian Oxyz có đáp án và lời giải chi tiết, giúp học sinh khối 12 học tốt chương trình Hình học 12 chương 3 và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Khái quát nội dung chuyên đề phương pháp tọa độ trong không gian – Huỳnh Đức Khánh: BÀI SỐ 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN. A. Lý thuyết 1. Tọa độ của điểm và của vectơ. 2. Biểu thức tọa độ của các phép toán vectơ. 3. Tích vô hướng của hai vectơ. 4. Tích có hướng của hai vectơ. 5. Phương trình mặt cầu. B. Các dạng toán và bài tập trắc nghiệm Dạng 1. Tọa độ của vectơ. Dạng 2. Tọa độ của điểm. Dạng 3. Tích có hướng của hai vectơ. Dạng 4. Phương trình mặt cầu. BÀI SỐ 2 . PHƯƠNG TRÌNH MẶT PHẲNG. A. Lý thuyết 1. Vectơ pháp tuyến của mặt phẳng. 2. Phương trình tổng quát của mặt phẳng. 3. Vị trí tương đối. 4. Khoảng cách từ một điểm đến một mặt phẳng. [ads] B. Các dạng toán và bài tập trắc nghiệm Dạng 1. Viết phương trình mặt phẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Vị trí tương đối. Dạng 4. Góc giữa hai mặt phẳng. Dạng 5. Tìm điểm thỏa điều kiện cho trước. BÀI SỐ 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. A. Lý thuyết 1. Vectơ chỉ phương của đường thẳng. 2. Phương trình tham số của đường thẳng. 3. Vị trí tương đối. B. Các dạng toán và bài tập trắc nghiệm Dạng 1. Viết phương trình mặt phẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Hình chiếu – khoảng cách. Dạng 4. Vị trí tương đối. Dạng 5. Góc. Dạng 6. Tìm điểm thỏa điều kiện cho trước.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Chín Em
Tài liệu gồm 971 trang được biên soạn bởi tác giả Nguyễn Chín Em trình bày kiến thức trọng tâm, các dạng toán và bài tập trắc nghiệm các chủ đề: hệ tọa độ Oxyz trong không gian, phương trình mặt phẳng, phương trình đường thẳng, phương trình mặt cầu; giúp học sinh tự học chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian Oxyz và ôn thi THPT Quốc gia môn Toán. Bài tập trắc nghiệm Oxyz trong tài liệu được phân loại theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Chín Em: BÀI 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN A KIẾN THỨC TRỌNG TÂM 1 Hệ tọa độ trong không gian. 2 Tọa độ một điểm. 3 Tọa độ của một véc-tơ. 4 Biểu thức toạ độ của các phép toán véc-tơ. 5 Biểu thức toạ độ của tích vô hướng và một số ứng dụng. 6 Tích có hướng của hai véc-tơ và ứng dụng. 7 Các bất đẳng thức vectơ. 8 Phương trình mặt cầu. B CÁC DẠNG TOÁN 1 Tìm tọa độ của vectơ và của điểm. 2 Chứng minh ba vectơ đồng phẳng hoặc không đồng phẳng. 3 Tích vô hướng và các ứng dụng. 4 Chứng minh các tính chất hình học. 5 Chứng minh các bất đẳng thức. 6 Mặt cầu. C BÀI TẬP RÈN LUYỆN D CÂU HỎI TRẮC NGHIỆM BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG A KIẾN THỨC TRỌNG TÂM 1 Véc-tơ pháp tuyến. 2 Phương trình tổng quát của mặt phẳng. + Điều kiện để hai mặt phẳng song song, vuông góc. + Khoảng cách từ một điểm đến một mặt phẳng. + Góc giữa hai mặt phẳng. B CÁC DẠNG TOÁN 1 Viết phương trình mặt phẳng trung trực của đoạn thẳng AB cho trước. 2 Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương cho trước. 3 Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng d đi qua hai điểm A và B. 4 Viết phương trình mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q). 5 Viết phương trình mặt phẳng (P) đi qua điểm M và chứa đường thẳng ∆. 6 Viết phương trình mặt phẳng (P) chứa hai đường thẳng song song ∆1 và ∆2. 7 Viết phương trình mặt phẳng (P) chứa hai đường thẳng cắt nhau ∆1 và ∆2. 8 Viết phương trình mặt phẳng (P) chứa đường thẳng ∆1 và song song với đường thẳng ∆2 với ∆1 và ∆2 chéo nhau. 9 Viết phương trình mặt phẳng (P) đi qua M, đồng thời vuông góc với hai mặt phẳng (α) và (β). 10 Viết phương trình mặt phẳng (P) đi qua điểm M và giao tuyến của hai mặt phẳng (α), (β). 11 Viết phương trình mặt phẳng (P) tạo với mặt phẳng (Q) cho trước một góc α. 12 Viết phương trình mặt phẳng (P) liên quan đến khoảng cách. C CÂU HỎI TRẮC NGHIỆM [ads] BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG A KIẾN THỨC TRỌNG TÂM 1 Phương trình tham số của đường thẳng. 2 Điều kiện để hai đường thẳng song song, trùng nhau, cắt nhau hoặc chéo nhau. 3 Điều kiện để một đường thẳng song song, cắt hoặc vuông góc với một mặt phẳng. 4 Khoảng cách. + Khoảng cách từ một điểm đến một đường thẳng. + Khoảng cách giữa hai đường thẳng chéo nhau. B CÁC DẠNG TOÁN 1 Đường thẳng đi qua một điểm và véc-tơ chỉ phương cho trước. 2 Viết phương trình đường thẳng giao tuyến của hai mặt phẳng. 3 Viết phương trình đường thẳng đi qua điểm M và vuông góc với hai đường thẳng cho trước. 4 Viết phương trình đường thẳng đi qua điểm M, cắt và vuông góc với một đường thẳng cho trước. 5 Viết phương trình đường thẳng đi qua điểm M, vuông góc với (d1) và cắt (d2). 6 Viết phương trình đường thẳng đi qua điểm M cắt cả hai đường thẳng (d1) và (d2). 7 Viết phương trình đường thẳng (d) nằm trong mặt phẳng (P) cắt cả hai đường thẳng (d1), (d2). 8 Viết phương trình đường thẳng (d) song song với (∆) cắt cả hai đường thẳng (a) và (b). 9 Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau (a) và (b). 10 Viết phương trình đường thẳng (d) là hình chiếu vuông góc của (a) lên mặt phẳng (P). 11 Viết phương trình đường thẳng (d) đối xứng với (a) qua mặt phẳng (P). 12 Tìm hình chiếu vuông góc của một điểm trên một đường thẳng. 13 Tìm hình chiếu vuông góc của một điểm trên một mặt phẳng. 14 Vị trí tương đối giữa hai mặt cầu. 15 Xét vị trí tương đối giữa hai mặt phẳng. 16 Xét vị trí tương đối giữa mặt phẳng và mặt cầu. C DẠNG TOÁN TỔNG HỢP D CÂU HỎI TRẮC NGHIỆM BÀI 4 . MẶT CẦU A KIẾN THỨC TRỌNG TÂM 1 Phương trình mặt cầu. B CÁC DẠNG TOÁN 1 Viết phương trình mặt cầu. 2 Dạng toán tổng hợp liên quan đến phương trình mặt cầu. C CÂU HỎI TRẮC NGHIỆM
Chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán
giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu chuyên đề phương pháp tọa độ trong không gian Oxyz (Hình học 12 chương 3) nhằm bổ trợ cho các em học sinh khối 12 trong quá trình ôn thi THPT Quốc gia môn Toán. Tài liệu gồm 182 trang được biên soạn bởi thầy Lê Văn Đoàn phân dạng và tuyển chọn các bài toán thuộc các chủ đề: hệ trục tọa độ trong không gian, phương trình mặt phẳng, phương trình đường thẳng. Mục lục tài liệu chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán: BÀI 1 . HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN. + Dạng toán 1. Bài toán liên quan đến véctơ và độ dài đoạn thẳng (Trang 3). + Dạng toán 2. Bài toán liên quan đến trung điểm và trọng tâm (Trang 4). + Dạng toán 3. Bài toán liên quan đến hai véctơ bằng nhau (Trang 5). + Dạng toán 4. Hai véctơ cùng phương và ba điểm thẳng hàng (Trang 8). + Dạng toán 5. Nhóm bài toán liên quan đến hình chiếu và điểm đối xứng (Trang 9). + Dạng toán 6. Bài toán liên quan đến tích vô hướng (Trang 17). + Dạng toán 7. Bài toán liên quan đến tích có hướng (Trang 19). + Dạng toán 8. Xác định các yếu tố cơ bản của mặt cầu (Trang 23). + Dạng toán 8. Viết phương trình mặt cầu dạng cơ bản (Trang 25). [ads] BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của mặt phẳng (Trang 44). + Dạng toán 2. Khoảng cách, góc và vị trí tương đối (Trang 45). + Dạng toán 2. Viết phương trình mặt phẳng (Trang 55). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của đường thẳng (Trang 81). + Dạng toán 2. Góc (Trang 83). + Dạng toán 3. Khoảng cách (Trang 86). + Dạng toán 4. Vị trí tương đối (Trang 88). + Dạng toán 5. Viết phương trình đường thẳng (Trang 105). + Dạng toán 6. Hình chiếu, điểm đối xứng và bài toán liên quan (Trang 139). + Dạng toán 7. Bài toán cực trị và một số bài toán khác (Trang 155).
Trắc nghiệm VD - VDC hình học Oxyz - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 3 – phương pháp tọa độ trong không gian Oxyz, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề hình học Oxyz. Tài liệu trắc nghiệm VD – VDC hình học Oxyz – Đặng Việt Đông gồm 144 trang với các bài tập trắc nghiệm hình học Oxyz ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về hình học Oxyz được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC hình học Oxyz – Đặng Việt Đông: Dạng toán 1. Hệ tọa độ trong không gian. Dạng toán 2. Mặt phẳng trong không gian. Dạng toán 3. Góc, khoảng cách, vị trí tương đối với mặt phẳng. Dạng toán 4. Đường thẳng trong không gian. Dạng toán 5. Góc, khoảng cách, vị trí tương đối với đường thẳng. Dạng toán 6. Mặt cầu trong không gian. Dạng toán 7. Min – max trong hình học Oxyz. + Min – max với mặt phẳng. + Min – max với đường thẳng. + Min – max với mặt cầu. Dạng toán 8. Tọa độ hóa hình học không gian.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6