Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình bậc nhất hai ẩn

Tài liệu gồm 77 trang, hướng dẫn giải các dạng toán chuyên đề hệ phương trình bậc nhất hai ẩn, giúp học sinh học tốt chương trình Đại số 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. PHƯƠNG PHÁP THẾ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp thế. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp thế. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4. Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. II. PHƯƠNG PHÁP CỘNG ĐẠI SỐ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp cộng đại số. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ. C. BÀI TẬP TRẮC NGHIỆM HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu Toán 9 chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. Cho hệ phương trình bậc nhất hai ẩn: ax + by = c và a’x + b’y = c’ (*). 1. Để giải hệ phương trình (*) ta thường dùng phương pháp thế hoặc cộng đại số. 2. Từ hai phương trình của hệ phương trình (*), sau khi dùng phương pháp thế hoặc cộng đại số, ta thu được một phương trình mới (một ẩn). Khi đó số nghiệm của phương trình mới bằng số nghiệm của hệ phương trình đã cho. 3. Chú ý: Cách biện luận số nghiệm phương trình bậc nhất một ẩn ax + b = 0. – Nếu a ≠ 0 thì phương trình có nghiệm x = -b/a. – Nếu a = 0 ta được: 0x = -b. +) Nếu b = 0 thì phương trình có vô số nghiệm. +) Nếu b ≠ 0 thì phương trình vô nghiệm. B. Bài tập và các dạng toán. Dạng 1 : Giải và biện luận hệ phương trình. Cách giải: Để giải và biện luận hệ phương trình (*) ta làm như sau: + Bước 1: Từ hai phương trình (*), sau khi dùng phương pháp thế hoặc cộng đại số, ta thu được một phương trình mới (chỉ còn một ẩn). + Bước 2: Giải và biện luận phương trình mới, từ đó đi đến kết luận về giải và biện luận hệ phương trình đã cho. Dạng 2 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Một số bài toán thường gặp của dạng này là: + Bài toán 1: Tìm điều kiện nguyên của tham số để hệ phương trình có nghiệm (x;y) trong đó x và y cùng là những số nguyên. + Bài toán 2: Tìm điều kiện của tham số để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề sự xác định đường tròn, tính chất đối xứng của đường tròn
Tài liệu gồm 26 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề sự xác định đường tròn, tính chất đối xứng của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa đường tròn. 2. Vị trí tương đối của điểm M và đường tròn (O;R). 3. Cách xác định một đường tròn. 4. Đường tròn ngoại tiếp tam giác. 5. Tính chất đối xứng của đường tròn. B. Bài tập và các dạng toán. Dạng 1 : Chứng minh các điểm cho trước cùng nằm trên một đường tròn. Cách giải: + Cách 1: Chứng minh các điểm cho trước cùng cách đều một điểm cho trước nào đó. + Cách 2: Sử dụng kết quả: Nếu ABC = 90 độ thì B thuộc đường tròn đường kính AC. Dạng 2 : Xác định tâm đường tròn đi qua 3 điểm. Cách giải: Ta có tâm của đường tròn đi qua 3 điểm A, B, C không thẳng hàng là giao điểm của các đường trung trực. Dạng 3 : Xác định vị trí tương đối của một điểm với một đường tròn. Cách giải: Muốn xác định vị trí của điểm M đối với đường tròn (O;R) ta so sánh khoảng cách OM với bán kính R theo bảng sau: + M nằm trên đường tròn (O): OM = R. + M nằm trong đường tròn (O): OM < R. + M nằm ngoài đường tròn (O): OM > R. Dạng 4 : Tính bán kính của đường tròn ngoại tiếp tam giác và số đo các góc liên quan. Cách giải: Ta có thể sử dụng một trong các cách sau: + Cách 1. Sử dụng tính chất đường trung tuyến trong tam giác vuông. + Cách 2. Dùng định lý Pytago trong tam giác vuông. + Cách 3. Dùng hệ thức lượng về cạnh và góc trong tam giác vuông. Dạng 5 : Chứng minh đẳng thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.
Tài liệu Toán 9 chủ đề đường kính và dây của đường tròn
Tài liệu gồm 16 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đường kính và dây của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. So sánh độ dài của đường kính và dây. Định lí 1: Trong các dây của đường tròn, dây lớn nhất là đường kính của đường tròn đó. 2. Quan hệ vuông góc giữa đường kính và dây. Định lí 2: Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. Định lí 3: Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. B. Bài tập và các dạng toán. Dạng 1 : Tính độ dài đoạn thẳng. Cách giải: Sử dụng các kiến thức sau đây. 1. Trong một đường tròn đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. 2. Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. 3. Dùng định lý Pytago, hệ thức lượng trong tam giác vuông. Dạng 2 : Chứng minh đẳng thức. Cách giải: – Dùng phương pháp chứng minh hai tam giác bằng nhau, đồng dạng với nhau. – Dùng quan hệ giữa cạnh và góc trong tam giác, quan hệ cạnh huyền cạnh góc vuông. – Sử dụng tính đường trung bình của tam giác, tính chất tứ giác đặc biệt. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây
Tài liệu gồm 13 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Trong một đường tròn: – Hai dây bằng nhau thì cách đều tâm. – Hai dây cách đều tâm thì bằng nhau. 2. Trong hai dây của một đường tròn: – Dây nào lớn hơn thì dây đó gần tâm hơn. – Dây nào gần tâm hơn thì dây đó lớn hơn. B. Bài tập áp dụng. BÀI TẬP TRẮC NGHIỆM.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6