Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1)

Tài liệu gồm 188 trang, tổng hợp trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): hàm số lượng giác và phương trình lượng giác; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. Mục lục tài liệu trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): PHẦN I . TỰ LUẬN (Trang 1). BÀI 1 . HÀM SỐ LƯỢNG GIÁC (Trang 1). VẤN ĐỀ 01. Tìm tập xác định của hàm số (Trang 4). VẤN ĐỀ 02. Xét tính chẵn, lẻ của hàm số (Trang 6). VẤN ĐỀ 03. Xét tính tuần hoàn và tìm chu kỳ của hàm số (Trang 7). VẤN ĐỀ 04. Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số (Trang 9). VẤN ĐỀ 05: Vẽ đồ thị của một hàm số suy ra từ một đồ thị của hàm số đã biết (Trang 16). BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC (Trang 21). VẤN ĐỀ 01. Phương trình lượng giác cơ bản (Trang 21). VẤN ĐỀ 02. Một số phương pháp giải phương trình lượng giác (Trang 35). VẤN ĐỀ 03. Bài tập tổng hợp (Trang 45). BÀI 3 . BÀI TẬP TRONG ĐỀ ĐH – CĐ CÁC NĂM TRƯỚC (Trang 68). Dạng 1. Công thức lượng giác (Trang 68). Dạng 2. Đưa về phương trình tích (Trang 69). Dạng 3. Biến đổi tổng thành tích – tích thành tổng (Trang 73). Dạng 4. Phương trình bậc 2 – bậc 3 (Trang 75). Dạng 5. Phương trình bậc nhất theo sinx, cosx (Trang 80). Dạng 6. Phương trình đẳng cấp (Trang 83). Dạng 7. Phương trình đối xứng (Trang 84). Dạng 8. Phương pháp hạ bậc (Trang 84). Dạng 9. Công thức nhân ba (Trang 89). Dạng 10. Phương trình có chứa giá trị tuyện đối. Phương trình có chứa căn thức (Trang 87). Dạng 11. Phương trình có chứa tham số (Trang 89). PHẦN II . TRẮC NGHIỆM (Trang 90). A – ĐỀ BÀI (Trang 90). B – BẢNG ÐÁP ÁN (Trang 124). C – HƯỚNG DẪN GIẢI (Trang 125). Trong mỗi dạng bài, tài liệu tóm tắt lý thuyết SGK, hướng dẫn phương pháp giải toán, kèm theo các ví dụ minh họa từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đăng nhập để đọc

Phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1 (Toán 11). BÀI 1 . HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác đinh của hàm số. Dạng 2. Xét tính chẵn lẻ của hàm số. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. BÀI 3 . MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. Dạng 1. Phương trình bậc nhất đối với một hàm số lượng giác. Dạng 2. Phương trình bậc nhất đối với sin x và cos x. Dạng 3. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 4. Phương trình bậc hai đối với sin x và cos x. Dạng 5. Phương trình chứa sin x ± cos x và sin x . cos x.
Phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 110 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). BÀI 1 . CUNG VÀ GÓC LƯỢNG GIÁC. Dạng toán: Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng toán 1: Biểu diễn góc và cung lượng giác. Dạng toán 2: Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng toán 3: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng toán 4: Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3 . CÔNG THỨC LƯỢNG GIÁC. Dạng toán 1: Tính giá trị lượng giác, biểu thức lượng giác. Dạng toán 2: Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng toán 3: Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng toán 4: Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng toán 5: Chứng minh đẳng thức, bất đẳng thức trong tam giác.
Lý thuyết, các dạng toán và bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 76 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). 1. CUNG VÀ GÓC LƯỢNG GIÁC I. Tóm tắt lí thuyết. 1. Khái niệm cung và góc lượng giác. 2. Số đo của cung và góc lượng giác. II. Các dạng toán. Dạng 1. Liên hệ giữa độ và rađian. Dạng 2. Độ dài cung lượng giác. Dạng 3. Biểu diễn cung lượng giác trên đường tròn lượng giác. 2. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG I. Tóm tắt lí thuyết. 1. Định nghĩa. 2. Hệ quả. 3. Ý nghĩa hình học của tang và côtang. 4. Công thức lượng giác cơ bản. 5. Giá trị lượng giác của các cung có liên quan đặc biệt. II. Các dạng toán. Dạng 1. Dấu của các giá trị lượng giác. Dạng 2. Tính giá trị lượng giác của một cung. Dạng 3. Sử dụng cung liên kết để tính giá trị lượng giác. Dạng 4. Rút gọn biểu thức và chứng minh đẳng thức. 3. CÔNG THỨC LƯỢNG GIÁC I. Công thức cộng. Dạng 1. Công thức cộng. II. Công thức nhân đôi. III. Các dạng toán. Dạng 2. Tính các giá trị lượng giác của các góc cho trước. Dạng 3. Rút gọn biểu thức cho trước. Dạng 4. Chứng minh đẳng thức lượng giác. IV. Công thức biến đổi. Dạng 5. Biến đổi một biểu thức thành một tổng hoặc thành một tích. Dạng 6. Chứng minh một đẳng thức lượng giác có sử dụng nhóm công thức biến đổi. Dạng 7. Dùng công thức biến đổi để tính giá trị (rút gọn) của một biểu thức lượng giác. Dạng 8. Nhận dạng tam giác. Một số hệ thức trong tam giác. 4. ĐỀ KIỂM TRA CHƯƠNG VI I. Đề số 1a. II. Đề số 1b. III. Đề số 2a. IV. Đề số 2b. V. Đề số 3a. VI. Đề số 3b. VII. Đề số 4a. VIII. Đề số 4b. IX. Đề số 5a. X. Đề số 5b.
Tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 83 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển tập 198 câu vận dụng cao (VD – VDC) hàm số lượng giác và phương trình lượng giác, có đáp án và lời giải chi tiết; giúp học sinh khối 11 rèn luyện khi học tập chương trình Đại số và Giải tích 11 chương 1. Trích dẫn tài liệu tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác: + Gọi m/n là giá trị lớn nhất của a để bất phương trình √a3(x − 1)2 + √a(x − 1)2 6√4a3sin πx2 có ít nhất một nghiệm, trong đó m, n là các số nguyên dương và m/n là phân số tối giản. Tính giá trị của biểu thức P = 22m + n. + Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình cos 4x + 6 sinx cos x = m có hai nghiệm phân biệt trên đoạn h0;π4i. + Có bao nhiêu điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình (1 + sinx + cos x)tan(π − x) = sin 2x + 2 sinx + 2 cos x + 2?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6