Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 12 THPT năm học 2019 - 2020 sở GDĐT Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn HSG Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc, đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC vuông tại A. Điểm D là chân đường phân giác trong góc A. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Đường tròn (x + 2)^2 + (y – 1)^2 = 9 ngoại tiếp tam giác DMN. Gọi H là giao điểm của BN và CM, đường thẳng AH có phương trình 3x + y – 10 = 0. Tìm tọa độ điểm B biết M có hoành độ dương, A có hoành độ nguyên. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, AA’ = a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) trùng với trung điểm cạnh AB. Gọi I là trung điểm của A’C, điểm S thỏa mãn IB = 2SI. Tính theo a thể tích khối chóp S.AA’B’B. [ads] + Một hộp có 50 quả cầu được đánh số từ 1 đến 50. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Tính xác suất để tích 3 số ghi trên 3 quả cầu lấy được là một số chia hết cho 8. + Cho hàm số y = x^3 – 3x^2 – mx + 2  có đồ thị là (Cm). Tìm tất cả các giá trị thực của tham số m để (Cm) có điểm cực đại và điểm cực tiểu cách đều đường thẳng y = x – 1. + Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Mặt phẳng (P) đi qua trung điểm I của AG và cắt các đoạn AB, AC, AD tại các điểm khác A. Gọi hA, hB, hC, hD lần lượt là khoảng cách từ các điểm A, B, C, D đến mặt phẳng (P). Chứng minh rằng: (hB^2 + hC^2 + hD^2)/3 ≥ hA^2.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề HSG Toán 12 lần 1 năm 2023 - 2024 THPT Lý Thái Tổ Gia Bình 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra học sinh giỏi môn Toán 12 lần 1 năm học 2023 – 2024 trường THPT Lý Thái Tổ và trường THPT Gia Bình số 1, tỉnh Bắc Ninh; đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh : + Đội tuyển học sinh giỏi môn Toán gồm 10 học sinh gồm 6 nam trong đó có Quang và 4 nữ trong đócó Huyền được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ ra mắt đội tuyển học sinh giỏi. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Quang không ngồi cạnh Huyền là? + Cho tam giác ABC vuông tại A AB cm 6 AC cm 3. M là một điểm di động trên cạnh BC (M khác B C); gọi H K lần lượt là hình chiếu vuông góc của M trên AB và AC. Cho hình chữ nhật AHMK quay xung quanh cạnh AH khối trụ được tạo thành có thể tích lớn nhất là? + Cho tứ diện ABCD 1111 có thể tích 1 V 156. Tứ diện ABCD 2222 có các đỉnh là trọng tâm các mặt của tứ diện ABCD 1111 (như hình vẽ). Tứ diện ABCD nnnn 1111 có các đỉnh là trọng tâm các mặt của tứ diện ABC nnnn D (n 1 n). Gọi Vn là thể tích của tứ diện ABCD nnnn. Tính 1 2 VVV n.
Đề học sinh giỏi Toán 12 chuyên năm 2023 - 2024 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc. Trích dẫn Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Cho n là số nguyên dương lớn hơn 1. Kí hiệu G(n) là ước nguyên tố lớn nhất của n. a) Chứng minh rằng nếu n + 1 là lũy thừa của 2 và n chia hết cho 11 thì G(n) > 11. b) Hai số nguyên tố phân biệt p, q được gọi là xa lạ nếu không tồn tại số nguyên dương n lớn hơn 1 để hai tập hợp {p;q} và {G(n);G(n + 1)} trùng nhau. Chứng minh rằng nếu p < q là hai số nguyên tố lẻ sao cho ordp2 = ordq2 thì 2 và p là hai số xa lạ và có vô hạn cặp số nguyên tố (p;9) sao cho p < q và hai số p và q là xa lạ. + Cho tam giác ABC nhọn và cân tại đỉnh A. Gọi D và E lần lượt là trung điểm của CB và CA, M là trung điểm của DE. Đường tròn ngoại tiếp tam giác AEM cắt cạnh AB tại điểm N. Tiếp tuyến tại M và N của đường tròn ngoại tiếp tam giác AEM cắt nhau tại P. a) Đường thẳng AM cắt tiếp tuyến tại E của đường tròn ngoại tiếp tam giác AEM ở điểm Q. Chứng minh rằng P, D, Q thẳng hàng. b) Chứng minh rằng điểm P nằm trên đường thẳng BC. + Cho số nguyên dương n > 1, số nguyên dương k được gọi là n-good nếu với mọi cách tô màu mỗi số nguyên dương 1; 2; …; k bởi một trong hai màu xanh hoặc đỏ thì ta luôn chọn được n số cùng màu (không nhất thiết phân biệt) sao cho tổng của n số này cũng nằm trong tập hợp {1; 2; …; k} và cùng màu với n số vừa chọn. a) Tìm số 2-good nhỏ nhất. b) Tìm số 2024-good nhỏ nhất.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh vào đội dự tuyển thi học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Nai. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai : + Cho dãy số (un) thỏa mãn u1 = 1 và un + 1 = 3un + 10 với mọi số nguyên dương n. a) Tìm công thức tổng quát của dãy số (un) và tìm số dư trong phép chia up cho p với p là số nguyên tố lớn hơn 3. b) Chứng minh với số nguyên dương t > 1 tồn tại số nguyên dương s > t sao cho số ước nguyên tố của us lớn hơn 2 lần số ước nguyên tố của ut. + Cho 2024 viên bi được sắp xếp thành một hàng ngang. Tính số các cách đặt 29 chiếc thẻ vào giữa các viên bi thỏa mãn ở giữa hai viên bi kề nhau chỉ có nhiều nhất một chiếc thẻ và các viên bi đã cho được chia thành 30 phần mà mỗi phần có ít nhất 9 viên bi. + Cho 2024 viên bi giống nhau được đặt vào các đỉnh của hình đa giác đều có 2024 cạnh nội tiếp đường tròn (O), mỗi đỉnh chỉ có một viên bi. Tính số các cách đặt 29 chiếc thẻ giống nhau vào trung điểm các cạnh của đa giác đã cho thỏa mãn tại mỗi trung điểm có nhiều nhất một chiếc thẻ và các viên bi đã cho được chia thành 29 phần, mà mỗi phần có ít nhất 9 viên bi (biết hai cách đặt thẻ được coi là như nhau nếu tồn tại một phép quay quanh tâm O biến cách chia này thành cách chia kia).
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 - 2024 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Nam. Trích dẫn Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho tam giác ABC có ba góc nhọn không cân; (w) là đường tròn Euler của tam giác ABC. Gọi D, E, F lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, CA, AB. Kẻ tiếp tuyến tA của (w) tại D. Tiếp tuyến tA cắt đường tròn đường kính AB tại KA (KA khác D). Đường thẳng DF cắt AKA, BKA lần lượt tại LA, MA. Đường thẳng tA cắt CMA tại NA. Các điểm KB, LB, MB, NB và KC, LC, MC, NC được định nghĩa tương tự. a/ Chứng minh đường thẳng AKA song song với đường thẳng CMA. b/ Chứng minh các đường thẳng LANA, LBNB và LCNC đồng quy. + Lớp 1A có 35 học sinh, trong đó có bốn bạn Công, Minh, Đoàn, Dũng. Hỏi có tất cả bao nhiêu cách sắp xếp 35 học sinh đó thành một hàng ngang, mà trong mỗi cách sắp xếp không có ba bạn nào trong bốn bạn Công, Minh, Đoàn, Dũng đứng ở ba vị trí liên tiếp. + Một khu rừng hình tròn diện tích 367 (km2), có tất cả 18 người kiểm lâm nhiệm vụ tuần tra ở đó. Họ sử dụng thiết bị không dây để liên lạc với nhau. Biết rằng thiết bị không dây này chỉ có hiệu quả trong vòng 9 (km). Chứng minh rằng ở bất cứ thời điểm nào, luôn tồn tại hai người có thể liên lạc được với năm người khác.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6