Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Bình Định

Ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn (O) lấy điểm C sao cho cung BC nhỏ hơn cung AC, qua C dựng tiếp tuyến với đường tròn (O) cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD (K thuộc CD); CH cắt BK tại E. a) Chứng minh BK + BD < EC. b) Chứng minh BH.AD = AH.BD. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên BC (M khác B và C). Hình chiếu của M lên AB, AC lần lượt là H và K. Gọi I là giao điểm của BK và CH. Chứng minh rằng đường thẳng IM luôn đi qua một điểm cố định. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ
Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF Dưới đây là thông tin về Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ:Đề thi bao gồm 40% câu hỏi trắc nghiệm và 60% câu hỏi tự luận, thời gian làm bài là 150 phút. Đề thi được thiết kế với đáp án và lời giải chi tiết, giúp học sinh ôn tập cũng như tự kiểm tra kỹ năng Toán của mình.Một số câu hỏi đặc biệt trong đề thi bao gồm:- Về tam giác vuông ABC, với đường cao AH và tia phân giác của góc C cắt AB và BD. Học sinh cần áp dụng kiến thức về tam giác, đường cao, và tia phân giác để giải quyết vấn đề.- Về bài toán mua kem, học sinh cần tính toán số tiền mua kem sau khuyến mại dựa trên thông tin về giảm giá từ ly kem thứ 5.- Về tam giác ABC nội tiếp đường tròn (O; R), học sinh cần chứng minh các tính chất của tứ giác BHCK, tính AP và AQ, cũng như chứng minh đường thẳng đi qua H và song song với AO.Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 là cơ hội để học sinh thể hiện kiến thức và kỹ năng của mình trong môn Toán. Dù khó khăn, nhưng qua việc giải các bài toán trong đề thi này, học sinh sẽ có cơ hội rèn luyện và phát triển khả năng logic, suy luận và tư duy toán học của mình. Chúc các em ôn tập tốt và đạt kết quả cao trong kì thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Chúng ta hãy cùng khám phá đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trong đề thi này, có những câu hỏi thú vị như: 1. Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Hãy tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. 2. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 3. Chứng minh AB/AC = SB/SC trong tam giác ABC. 4. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 5. Cho 2024 phân số gồm từ 1/2024 đến 2024/2024. Thực hiện thao tác xoá hai số a, b trong dãy và thay vào số a + b – 4ab cho đến khi chỉ còn duy nhất một số, hãy tìm số đó. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 9 rèn luyện kỹ năng và chuẩn bị tốt cho các kì thi sắp tới.
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi sẽ được thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút. Đề thi sẽ đi kèm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm để giúp các em tự kiểm tra và tự đánh giá kết quả của mình. Dưới đây là một số câu hỏi mẫu trong Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022 - 2023 của sở GD&ĐT Hà Nam: 1. Cho parabol P : y = x^2 và hai điểm A(2,4) và B(8,8) nằm trên đồ thị của P. Gọi M là điểm thay đổi trên P và có hoành độ là m. Tìm giá trị của m để diện tích tam giác ABM là lớn nhất. 2. Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm sao cho tam giác ABC là nhọn. Các đường thẳng CA, CB cắt đường tròn (O) tại các điểm D, E. Trên cung AB không chứa D, lấy điểm F sao cho 0 < FA < FB. Đường thẳng CF cắt AB tại M, cắt đường tròn O tại N (N khác F) và cắt đườn tròn (O') tại P (P khác C). Hỏi: (a) Khi 0 < ACB = 60 độ, tính độ dài DE theo R. (b) Chứng minh rằng CN/CF = CP/CM. (c) Gọi I, H lần lượt là hình chiếu vuông góc của F lên BD, AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB/BD + AD/FH + FI/FK đạt giá trị nhỏ nhất. 3. Cho góc xOy nhọn và A là điểm cố định trên Ox. Đường tròn (I) tiếp xúc với Ox, Oy tại E, D. Gọi AF là tiếp tuyến thứ 2 từ A đến đường tròn (I) (F là tiếp điểm). Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định. File WORD chuẩn bị cho quý thầy cô có thể tải về để sử dụng. Hy vọng rằng Đề thi sẽ giúp các em ôn tập và nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Bình Dương
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD&ĐT Bình Dương Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD&ĐT Bình Dương Chào đón quý thầy cô và các em học sinh lớp 9, mình xin giới thiệu đến các bạn Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Bình Dương. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn một số câu hỏi từ Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD&ĐT Bình Dương: 1. Cho A là tập hợp gồm 6 sản phẩm bất kì của tập hợp X x {0, 1, 4}. Chứng minh rằng tồn tại hai tập con B1 và B2 của tập hợp A, không trùng nhau và không rỗng, sao cho tổng các phần tử của tập B1 bằng tổng các phần tử của tập B2. 2. Cho hình thang ABCD với AB // CD. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh rằng đường thẳng EF đi qua trung điểm của hai đáy AB, CD. 3. Cho tam giác nhọn ABC và D, E, F lần lượt là các điểm trên các cạnh BC, CA, AB. Nối AD, BE, CF. Các đường nối cắt nhau tại các điểm G, H, I. Chứng minh rằng nếu diện tích của bốn tam giác AFG, IHG, BID, CEH bằng nhau thì các diện tích của ba tứ giác AGHE, BIGF, CHID cũng bằng nhau. Đây là những câu hỏi thú vị và đầy thách thức mà các em học sinh sẽ phải đối mặt. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6