Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập hệ phương trình nhiều ẩn - Trần Sĩ Tùng

Tài liệu gồm 69 trang phân dạng và tuyển tập các bài tập hệ phương trình nhiều ẩn do thầy Trần Sĩ Tùng biên soạn. Nội dung tài liệu : I. HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN 1. Hệ phương trình bậc nhất hai ẩn 2. Hệ phương trình bậc nhất nhiều ẩn Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để đưa về các phương trình hay hệ phương trình có số ẩn ít hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số, phương pháp thế như đối với hệ phương trình bậc nhất hai ẩn. II. HỆ PHƯƠNG TRÌNH BẬC HAI HAI ẨN 1. Hệ gồm 1 phương trình bậc nhất và 1 phương trình bậc hai Từ phương trình bậc nhất rút một ẩn theo ẩn kia. Thế vào phương trình bậc hai để đưa về phương trình bậc hai một ẩn. Số nghiệm của hệ tuỳ theo số nghiệm của phương trình bậc hai này. 2. Hệ đối xứng loại 1 Đặt S = x + y, P = xy. Đưa hệ phương trình (I) về hệ (II) với các ẩn là S và P. Giải hệ (II) ta tìm được S và P. Tìm nghiệm (x, y) bằng cách giải phương trình: X^2 – SX + P = 0. 3. Hệ đối xứng loại 2 Trừ vế theo vế và đưa về phương trình tích. 4. Hệ đẳng cấp bậc hai Giải hệ khi x = 0 (hoặc y = 0). Khi x ≠ 0, đặt y = kx. Thế vào hệ (I) ta được hệ theo k và x. Khử x ta tìm được phương trình bậc hai theo k. Giải phương trình này ta tìm được k, từ đó tìm được (x; y). [ads] III. HỆ PHƯƠNG TRÌNH DẠNG KHÁC Vấn đề 1: Phương pháp thế Từ phương trình đơn giản nhất của hệ hoặc từ phương trình tích tìm cách rút một ẩn theo ẩn kia, rồi thế vào phương trình còn lại. Giải phương trình này. Số nghiệm của hệ tuỳ thuộc số nghiệm của phương trình này. Một số dạng thường gặp: + Dạng 1: Trong hệ có một phương trình bậc nhất với ẩn x (hoặc y). + Dạng 2: Trong hệ có một phương trình có thể đưa về dạng tích của các biểu thức bậc nhất hai ẩn. + Dạng 3: Trong hệ có một phương trình có thể đưa về dạng phương trình bậc hai của một ẩn với ẩn còn lại là tham số. Chú ý: Đôi khi có thể ta phải kết hợp biến đổi cả 2 phương trình của hệ để đưa về một trong các dạng trên. Vấn đề 2: Phương pháp đặt ẩn phụ Biến đổi các phương trình của hệ để có thể đặt ẩn phụ, rồi chuyển về hệ cơ bản. Vấn đề 3: Phương pháp đánh giá Từ điều kiện của ẩn, xét trường hợp xảy ra dấu “=” ở bất đẳng thức. Vấn đề 4: Phương pháp hàm số Chọn hàm số thích hợp, rồi sử dụng tính đơn điệu của hàm số. Vấn đề 5: Hệ phương trình hoán vị vòng quanh Vấn đề 6: Hệ phương trình giải được bằng phương pháp lượng giác hoá Vấn đề 7: Hệ phương trình chứa tham số Vấn đề 8: Giải phương trình bằng cách đưa về hệ phương trình

Nguồn: toanmath.com

Đăng nhập để đọc

Tuyệt kĩ bấm máy Casio giải phương trình - hệ phương trình - bất phương trình
Tài liệu gồm 24 trang hướng dẫn tuyệt kỹ bấm máy Casio để tìm hướng giải và giải nhanh các bài toán phương trình, hệ phương trình và bất phương trình. Các dạng toán có trong tài liệu: + Dạng 1. Các mối quan hệ được rút ra từ một phương trình + Dạng 2. Các mối quan hệ được rút ra từ kết hợp hai phương trình [ads] Đây là một phương pháp giúp định hướng nhanh mối quan hệ giữa x và y, rất thích hợp áp dụng với các phương pháp phân tích thành nhân tử, phương pháp hàm số và đánh giá … Đặc biệt là khả năng sử dụng để giải phương trình, bất phương trình vô tỷ, phân tích phương trình bậc 4 thành nhân tử. Hy vọng sau tài liệu này các bạn sẽ có cái nhìn khác về hệ phương trình và có thể dễ dàng giải quyết các bài toán tương tự.
Sáng tác phương trình và hệ phương trình - Nguyễn Tài Chung
Tài liệu gồm 63 trang giới thiệu một số phương pháp sáng tác và giải các bài toán về phương trình – hệ phương trình. + Xây dựng một số phương trình được giải bằng cách đưa về hệ. + Sử dụng công thức lượng giác để sáng tác các phương trình đa thức bậc cao. + Sử dụng các đồng nhất thức đại số có xuất sứ từ các hàm lượng giác hypebôlic để sáng tác các phương trình đa thức bậc cao. + Sáng tác một số phương trình đẳng cấp đối với hai biểu thức. + Xây dựng phương trình từ các đẳng thức. [ads] + Xây dựng phương trình từ các hệ đối xứng loại II. + Xây dựng phương trình vô tỉ dựa vào tính đơn điệu của hàm số. + Xây dựng phương trình vô tỉ dựa vào các phương trình lượng giác. + Sử dụng căn bậc n của số phức để sáng tạo và giải hệ phương trình. + Sử dụng bất đẳng thức lượng giác trong tam giác để sáng tạo ra các phương trình lượng giác hai ẩn và xây dựng thuật giải. + Sử dụng hàm ngược để sáng tác một số phương trình, hệ phương phương trình.
Tuyển tập hệ phương trình - Diễn đàn Box Math
Tài liệu gồm 151 trang phân dạng và tuyển chọn các bài toán hệ phương trình hay và khó có lời giải chi tiết. Chúng tôi rất vui mừng khi Tuyển tập hệ phương trình của BoxMath được hoàn thành, bởi nó đáp ứng được nhiều mong mỏi của quý đọc giả, đặc biệt là các em học sinh. Có thể nói tuyển tập hệ phương trình của BoxMath là sự tập hợp nhiều bài toán hay và kỉ thuật thường dùng khi giải hệ phương trình. Nội dung của tuyển tập hệ phương trình của BoxMath được chia theo phương pháp giải toán như sau: [ads] 1. Sử dụng phép biến đổi đại số và thế 2. Sử dụng phương pháp đặt ẩn phụ 3. Sử dụng phương pháp hàm số 4. Sử dụng phương pháp đánh giá 5. Sử dụng phép thế lượng giác Hy vọng, tuyển tập hệ phương trình của BoxMath góp phần nhỏ đem lại nhiều thành công cho các bạn đọc giả, đặc biệt là quý Thầy Cô trong công tác giảng dạy, các em học sinh trong học tập, trong các kì thi cấp khu vực, cấp quốc gia. Cuối cùng thay ban quản trị xin chúc các bạn lời chúc sức, thành đạt trong công sống, và tha thiết đón nhận ý kiến đóng góp quý báo của bạn đọc về những tồi tài, thiếu sót để tuyển tập hệ phương trình của BoxMath hoàn thiện hơn.
Kĩ thuật xử lí phương trình - hệ phương trình vô tỉ - Đoàn Trí Dũng
Tài liệu gồm 17 trang hướng dẫn các phương pháp xử lí phương trình – hệ phương trình vô tỉ thường gặp trong các đề thi. PHẦN I: PHƯƠNG PHÁP XÉT TỔNG VÀ HIỆU Phương pháp xét tổng và hiệu sử dụng cho các phương trình vô tỷ hoặc một phương trình có trong một hệ phương trình ở dạng √A ± √B = C. Điều kiện sử dụng ở chỗ ta nhận thấy C là một nhân tử của (A – B). PHẦN II: DỰ ĐOÁN NHÂN TỬ TỪ NGHIỆM VÔ TỶ Phương pháp này tận dụng nghiệm vô tỷ mà máy tính đã dò được để đoán trước nhân tử của phương trình, hệ phương trình. Để sử dụng kỹ thuật này, chúng ta cần phải nắm được tốt quy tắc dò nghiệm SHIFT SOLVE. PHẦN III: HỆ SỐ BẤT ĐỊNH Mục đích của phương pháp hệ số bất định là tạo ra các thêm bớt giả định sao cho có nhân tử chung rồi đồng nhất hệ số để tìm ra các giả định đó. Hệ số bất định có bản chất là phân tích nhân tử và có tác dụng mạnh trong các bài toán có nhiều hơn 1 nghiệm. [ads] PHẦN IV: ĐẠO HÀM MỘT BIẾN + Kỹ thuật 1: Coi x là ẩn, y là tham số, tính đạo hàm f’x(x, y) và chứng minh hàm số đơn điệu và liên tục theo x. + Kỹ thuật 2: Phương trình f(x) = 0 có tối đa 1 nghiệm nếu f(x) đơn điệu và liên tục theo x. + Kỹ thuật 3: f(x) = f(y) → x = y nếu f(x) đơn điệu và liên tục theo x. PHẦN V: LƯỢNG GIÁC HÓA PHẦN VI: ĐẶT 2 ẨN PHỤ + Kỹ thuật 1: Đặt 2 ẩn phụ để đưa về hệ phương trình cơ bản. + Kỹ thuật 2: Đặt 2 ẩn phụ để phân tích đa thức thành nhân tử. PHẦN VII: PHƯƠNG PHÁP ĐÁNH GIÁ + Kỹ thuật 1: Đưa phương trình, hệ phương trình về dạng A^2 + B^2 ≤ 0. + Kỹ thuật 2: Sử dụng Cauchy với những bài có căn bậc lớn. + Kỹ thuật 3: Sử dụng Bunyakovsky. + Kỹ thuật 4: Sử dụng Minkowski. + Kỹ thuật 5: Sử dụng Schwartz. + Kỹ thuật 6: Sử dụng bất đẳng thức Jensen dành cho hàm lồi, hàm lõm.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6