Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên Ax, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ax, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh A, D, P thẳng hàng. + Cho hai đường thẳng d mx y d x m y m 1 2 với m 1. 1) Chứng minh rằng đường thẳng d1 đi qua điểm A cố định, đường thẳng d2 đi qua điểm B cố định với mọi m 1. 2) Viết phương trình đường thẳng đi qua hai điểm A và B. + Cho a, b, c là các số nguyên thỏa mãn ab bc ca chia hết cho 3. Chứng minh rằng nếu 3 3 3 abc chia hết cho 3 thì 3 3 3 abc chia hết cho 27.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thừa Thiên Huế
Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 - 2023 Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào thứ Năm, ngày 06 tháng 04 năm 2023. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: 1. Cho biểu thức \(A = (x^2 + 4x + 4)\). a) Hãy rút gọn biểu thức A. b) Tìm tất cả các số nguyên x sao cho A + 3 là số nguyên tố. 2. Cho phương trình \(x^2 - mx - 2 = 0\). a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. Gọi hai nghiệm đó là x1, x2. Hãy tìm giá trị của m sao cho \((x_1 + 2)(x_2 + 2) = 6\). b) Đặt \(B = x_1^4 + x_2^4\), chứng minh rằng khi m là số nguyên thì B cũng là số nguyên và B + 1 chia hết cho 3. 3. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, M là trung điểm BC. Các tiếp tuyến của đường tròn (O) tại B, C cắt nhau tại K, AK cắt đường tròn (O) tại điểm thứ hai P. a) Chứng minh rằng \(KP \cdot KA = KM \cdot KO\). b) Chứng minh rằng tam giác PKM đồng dạng tam giác OAM. c) Chứng minh rằng \(BAK = MAC\). d) Gọi BE, CF lần lượt là các đường cao của tam giác ABC, H là giao điểm của AK với BC, G là giao điểm của AM với EF. Chứng minh rằng GH vuông góc với BC.
Đề chọn đội tuyển HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương Bản PDF Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển chính thức học sinh giỏi tham dự kỳ thi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 tại phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề chọn đội tuyển HSG Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương: Cho a, b, c, k là các số tự nhiên thỏa mãn: \(333^2 = abc + k\). Chứng minh rằng \(k - 1\) chia hết cho 3. Tìm x, y nguyên biết: \(2x^2 + 7y^2 = 4xy + 12x - 5y\). Cho ∆ABC vuông tại A, đường cao AH. Các đường phân giác của góc BAH, CAH cắt BC lần lượt tại E, F. Chứng minh: \(\frac{BC}{CH} = \frac{EH}{BE}\) và tâm đường tròn ngoại tiếp ∆AEF trùng với tâm đường tròn nội tiếp ∆ABC. Kí hiệu \(d_1, d_2\) lần lượt là các đường thẳng vuông góc với BC tại E, F. Chứng minh rằng \(d_1, d_2\) tiếp xúc với đường tròn nội tiếp ∆ABC. Cho tam giác ABC. Gọi \(l_1, l_2, l_3\) lần lượt là độ dài các đường phân giác trong của góc A, B, C. Chứng minh rằng \(2\cos^2 A = \frac{bc}{l_1}\) và \(\frac{1}{l_1} = \frac{1}{l_2} + \frac{1}{l_3}\). File WORD (dành cho quý thầy, cô): [INSERT LINK TO WORD FILE]
Đề khảo sát HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề khảo sát HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát Học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương Đề khảo sát Học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát Học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề khảo sát HSG Toán lớp 9 năm 2022 - 2023 của phòng GD&ĐT Kim Thành - Hải Dương: - Tìm a, b sao cho đa thức \(3x^2 + ax + b^2\) chia hết cho đa thức \(x - 1\) dư 2, chia hết cho đa thức \(x - 2\) dư 17. Cho \(a, b, c\) là ba số nguyên tố cùng nhau thỏa mãn: \(111 = c \cdot ab\). Chứng minh: \(M = ab\) là số chính phương. - Cho tam giác \(ABC\) vuông tại \(A\), có đường cao \(AH\). Kẻ \(HI\) vuông góc với \(AB\), \(HK\) vuông góc với \(AC\) (\(I\) thuộc \(AB\), \(K\) thuộc \(AC\)). Chứng minh: a) \(\frac{BI}{AB} = \frac{CK}{AC}\) b) \(CK \cdot BH = BI \cdot CH = AH \cdot BC\). - Cho \(\triangle ABC\) có \(G\) là trọng tâm, một đường thẳng bất kỳ qua \(G\), cắt các cạnh \(AB\), \(AC\) lần lượt tại \(M\) và \(N\). Chứng minh rằng: \(\frac{AM}{AB} = \frac{AN}{AC} = \frac{3}{2}\). - Cho các số dương \(x, y, z\) thay đổi thỏa mãn: \(xy + yz + zx = xyz\). Tìm giá trị lớn nhất của biểu thức: \(111 - \frac{43}{4} - \frac{433}{4} \cdot \frac{x \cdot y \cdot z}{x + y + z}\). File WORD (dành cho quý thầy cô) đã được chuẩn bị sẵn. Các bạn học sinh hãy cùng nhau tham gia và thử sức với đề thi này để rèn luyện kiến thức và kỹ năng Toán của mình nhé!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Đắk Lắk
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Đắk Lắk Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Đắk Lắk Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Kỳ thi sẽ diễn ra vào thứ Tư ngày 29 tháng 03 năm 2023. Đề thi bao gồm các bài toán thú vị và phức tạp như: Cho hàm số y = -4x^2 có đồ thị là parabol (P) và một điểm Q(0; -9). Hãy tìm hai điểm M, N trên (P) sao cho tứ giác OMQN là một tứ giác lồi có diện tích bằng 27/2 cm2. Chứng minh rằng trong tam giác ABC, với tam giác nhọn nội tiếp đường tròn (O;R), tiếp tuyến tại A của (O) cắt BC tại M, tiếp tuyến MD của (O) cắt AC tại D, G là trung điểm của EF, MA^2 = MB*MC, BC = 2R.sinBAC, AB*DB = AC*DC. Cho tam giác ABC vuông tại A. Kẻ IM vuông góc với BC, IN vuông góc với AC, IK vuông góc với AB. Xác định vị trí điểm I sao cho tổng IM^2 + IN^2 + IK^2 là nhỏ nhất. Đây là cơ hội thú vị để thử thách kiến thức và kỹ năng toán học của các em học sinh lớp 9. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6