Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa kì 2 Toán 10 năm 2018 2019 trường Yên Phong 2 Bắc Ninh

Nguồn: onluyen.vn

Đăng nhập để đọc

Đề thi giữa kì 2 Toán 10 năm 2018 - 2019 trường Yên Phong 2 - Bắc Ninh
giới thiệu đến bạn đọc đề thi giữa kì 2 Toán 10 năm học 2018 – 2019 trường THPT Yên Phong số 2 – Bắc Ninh, đề được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút, đề nhằm kiểm tra các chủ đề kiến thức: giải và biện luận bất phương trình, hệ thức lượng trong tam giác, phương pháp tọa độ trong mặt phẳng Oxy, đề thi có lời giải chi tiết. Trích dẫn đề thi giữa kì 2 Toán 10 năm 2018 – 2019 trường Yên Phong 2 – Bắc Ninh : + Cho bất phương trình: mx^2 – 5mx + 4 ≥ 0. (1) 1) Giải bất phương trình (1) với m = 1. 2) Tìm m để bất phương trình (1) nghiệm đúng với mọi x thuộc R. [ads] + Cho tam giác ABC biết BC = 7, AC = 6, góc C = 60°. Tính độ dài cạnh AB và diện tích tam giác ABC. + Trong mặt phẳng Oxy, cho A(-2;3), B(1;-1), C(2;1). 1) Viết phương trình tổng quát của BC. 2) Tìm toạ độ A’ đối xứng với A qua d: 3x – 2y + 1 = 0.
Đề thi giữa kì 2 Toán 10 năm 2018 - 2019 trường Chu Văn An - Hà Nội
Ngày 19 tháng 03 năm 2019, trường THPT Chu Văn An – Hà Nội tổ chức kỳ thi giữa học kì II Toán 10 năm học 2018 – 2019, nhằm kiểm tra lại các chủ đề kiến thức Toán 10 học sinh đã được học trong thời gian qua: bất đẳng thức và bất phương trình, tích vô hướng của hai vectơ và ứng dụng, phương pháp tọa độ trong mặt phẳng Oxy. Đề thi giữa kì 2 Toán 10 năm 2018 – 2019 trường Chu Văn An – Hà Nội gồm 01 trang với 03 bài toán tự luận, học sinh làm bài thi Toán trong thời gian 90 phút (không kể thời gian phát đề). Trích dẫn đề thi giữa kì 2 Toán 10 năm 2018 – 2019 trường Chu Văn An – Hà Nội : + Cho tam giác ABC có góc A = 60°, AC = 8, AB = 5. Tính độ dài cạnh BC và độ dài phân giác trong AM của tam giác ABC, M thuộc BC. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x = 2 – 3t, y = t (t thuộc R) và hai điểm A(4;2), B(2;1). a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường thẳng d’ song song với đường thẳng d và cách A một khoảng bằng 8/√10. c) Gọi C, D lần lượt là hai điểm thuộc đường thẳng d sao cho tứ giác ABCD là hình thang cân có góc ở một đáy nhỏ hơn 45°. Viết phương trình đường thẳng đi qua trung điểm hai cạnh đáy của hình thang cân ABCD.
Đề thi giữa học kỳ 2 Toán 10 năm 2018 - 2019 trường THPT Yên Hòa - Hà Nội
giới thiệu đến bạn đọc đề thi giữa học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Yên Hòa – Hà Nội, đề được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận, trong đó phần trắc nghiệm gồm 16 câu, chiếm 04 điểm, phần tự luận gồm 04 câu, chiếm 06 điểm, đề nhằm kiểm tra lại các nội dung: bất đẳng thức và bất phương trình, phương pháp tọa độ trong mặt phẳng. Trích dẫn đề thi giữa học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Yên Hòa – Hà Nội : + Trong mặt phẳng tọa độ (Oxy), cho điểm A(2;1), B(-1;0). a/ Lập phương trình tổng quát của đường thẳng AB. b/ Lập phương trình đường thẳng A song song với AB, cách AB một khoảng bằng √10. c/ Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. [ads] + Cho bất phương trình (m^2 – 4)x^2 – 2(m + 2)x – 2 > 0. Với giá trị nào của m thì bất phương trình đã cho vô nghiệm. + Cho bất phương trình √(x – 1) + √(5 – x) + √(-x^2 + 6x – 5) ≥ m. Tìm giá trị lớn nhất của m để bất phương trình đã cho đúng với mọi x thuộc [1;5].
Đề thi giữa kỳ 2 Toán 10 năm 2018 2019 trường Lương Thế Vinh Hà Nội
Đề thi giữa kỳ 2 Toán 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội gồm 04 mã đề, các đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài tập, thời gian làm bài 90 phút, nội dung kiểm tra là các kiến thức Đại số 10 và Hình học 10 mà các em đã học từ đầu học kỳ 2 đến nay, đề thi có đáp án. Trích dẫn đề thi giữa kỳ 2 Toán 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Cho hai đường thẳng Δ1: a1x + b1y + c1 = 0 và Δ2: a2x + b2y + c2 = 0 trong đó a1^2 + b1^2 khác 0, a2^2 + b2^2 khác 0. Khẳng định nào sau đây sai? A. Tích vô hướng hai véc-tơ pháp tuyến của M1 và M2 bằng 0 thì M1 và M2 vuông góc. B. Véc-tơ pháp tuyến của M1 và M2 không cùng phương với nhau thì M1 và M2 cắt nhau. C. Véc-tơ pháp tuyến của M1 và M2 cùng phương với nhau thì M1 song song với M2. D. M1 và M2 trùng nhau khi véc-tơ pháp tuyến của chúng cùng phương với nhau và M ∈ M1 ⇒ M ∈ M2. [ads] + Xét góc lượng giác (OA, OM) = α, trong đó M là điểm không thuộc các trục tọa độ Ox, Oy và thuộc góc phần tư thứ hai của hệ trục tọa độ Oxy. Hãy chọn kết quả đúng trong các kết quả sau: A. sin α > 0; cos α < 0. B. sin α < 0; cos α > 0. C. sin α < 0; cos α < 0. D. sin α > 0; cos α > 0. + Trên đường tròn lượng giác với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 75 độ. Gọi N là điểm đối xứng với điểm M qua gốc tọa độ O, mọi cung lượng giác có điểm đầu A và điểm cuối N có số đo bằng?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6