Nội dung Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán Bản PDF - Nội dung bài viết Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán Chuyên đề này được biên soạn bởi thầy giáo Đặng Việt Đông và bao gồm 529 trang. Tài liệu tập trung vào các chuyên đề phát triển bài toán mức độ vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Đây là nguồn tư liệu hữu ích với đáp án và lời giải chi tiết. Trong Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán, một số câu hỏi mẫu như: + Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = 4x^3 + 2x^2 +mx + 6\) có ba điểm cực trị? Lời giải: Chọn B. Ta có: \(3(4x^2 + mx) = 12\). Xét phương trình \(3(4x^2 + mx) = 0\). Để hàm số có ba điểm cực trị, phương trình \(3(4x^2 + mx) = 0\) phải có 3 nghiệm phân biệt. Dựa vào phân tích, ta có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy IJ, K là hình chiếu của S lên AC, CB, BA. Từ các góc giữa mặt bên và đáy, chúng ta chứng minh được H là tâm đường tròn nội tiếp của tam giác ABC. + Cho hàm số \(y = x + 3x^2 - 2x^4 + 4x^3\). Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [2023, 2023] để hàm số \(y = f(x)\) nghịch biến trên khoảng [0, 3]? Lời giải: Cần tìm số giá trị nguyên của m để hàm số \(y = f(x)\) nghịch biến trên khoảng [0, 3]. Qua phân tích chi tiết, ta có 2023 giá trị nguyên của m thỏa mãn bài toán. Bằng cách nắm vững những kiến thức và phương pháp giải bài tập trong Chuyên đề phát triển VD – VDC này, các em học sinh sẽ có thêm cơ hội rèn luyện và củng cố kiến thức Toán một cách hiệu quả.
Nguồn: sytu.vn