Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD ĐT Hoàn Kiếm Hà Nội Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD ĐT Hoàn Kiếm Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2023-2024 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Năm ngày 26 tháng 10 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán lớp 9 năm 2023-2024 phòng GD&ĐT Hoàn Kiếm - Hà Nội: Cho a, b là các số nguyên thỏa mãn a^2 + 2b + 3 và b^2 + 2a + 3 đều chia hết cho 5. Chứng minh a + b + 2023 chia hết cho 5. Cho tam giác ABC nhọn, cân tại A, đường cao AM. Đường thẳng qua B và vuông góc với AB, cắt tia AM tại D. Lấy điểm F bất kì nằm giữa hai điểm B và M. Gọi E là hình chiếu vuông góc của A trên đường thẳng DF. Chứng minh DE·DF = DM·DA và DBF = DEB. Gọi O là trung điểm của AD. Đường thẳng qua O và vuông góc với EC, cắt EA tại S. Chứng minh tam giác EBF đồng dạng với tam giác SOE. Gọi K là trung điểm của EF. Chứng minh CK vuông góc với SD. Cho bảng ô vuông n x n. Cần điền vào mỗi ô vuông 1 × 1 của bảng một số nguyên thỏa mãn các điều kiện sau: Tổng các số trong mỗi mảng ô vuông 3 × 3 luôn dương. Tổng các số trong mỗi mảng ô vuông 4 × 4 luôn âm. Chỉ ra một cách điền số thỏa mãn với n = 5. Tìm điều kiện của n để tồn tại một cách điền số thỏa mãn.
Nguồn: sytu.vn