Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Hải Hòa Nghệ An
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Hải Hòa Nghệ An Bản PDF -
Nội dung bài viết Đề học sinh giỏi Toán lớp 9 Năm 2023 - 2024 trường THCS Hải Hòa, Nghệ An Đề học sinh giỏi Toán lớp 9 Năm 2023 - 2024 trường THCS Hải Hòa, Nghệ An
Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán năm học 2023 - 2024 tại trường THCS Hải Hòa, thị xã Cửa Lò, tỉnh Nghệ An. Đề thi bao gồm đáp án và hướng dẫn chấm điểm.
Trích dẫn một số câu hỏi từ đề thi:
1. Cho biểu thức: \(P = 2x + 1\) a) Rút gọn \(P\). b) Tính giá trị của biểu thức \(P\) khi \( |x - 1| = 4 - 12 + 19 - 192\). c) Tìm giá trị của \(x\) để \(6Q+P\) nhận giá trị nguyên.
2. Chứng minh rằng với mọi \(n\) là số nguyên và \(n > 2\) thì \(n^4 - n + 2\) không phải là số chính phương.
3. Trong tam giác vuông \(ABC\) tại \(A\), với \(BC = 2a (cm)\). Đường cao \(AH\) chia \(BC\) ở \(H\). Gọi \(D, E\) lần lượt là hình chiếu của \(H\) lên \(AC\) và \(AB\). a) Chứng minh rằng \(AB \cdot EB + AC \cdot EH = AB^2\). b) Vẽ đường thẳng qua \(B\) song song với \(AC\), và đường thẳng qua \(C\) song song với \(AB\), hai đường này cắt nhau tại \(M\). Gọi \(N, K\) lần lượt là trung điểm của \(BM\) và \(HC\). Chứng minh rằng \(AK\) vuông góc với \(KN\). c) Tính diện tích lớn nhất của tứ giác \(ADHE\).
Để tải file WORD của đề thi, vui lòng liên hệ với tổ chuyên môn Toán của trường THCS Hải Hòa, Nghệ An.