Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa

Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho P(x) = ax2 + bx + c là số nguyên với mọi x là số nguyên. Chứng minh rằng: 2a, b + c, c là các số nguyên. + Cho x, y là các số thực dương và x5 − y3 ≥ 2x. Chứng minh rằng x3 ≥ 2y. + Để xác thực tài khoản của người dùng A, một ứng dụng yêu cầu người đó thiết lập một mật khẩu là một số tự nhiên gồm 3 chữ số và chia hết cho 6, trong đó các chữ số phải lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu trên.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề tuyển sinh vào môn Toán năm 2022 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh vào môn Toán năm 2022 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán năm 2022 sở GD&ĐT Bình Phước Đề thi tuyển sinh Toán năm 2022 sở GD&ĐT Bình Phước Chào đón quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm 2022 của sở Giáo dục và Đào tạo tỉnh Bình Phước. Kỳ thi này sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Hãy cùng chúng tôi tìm hiểu chi tiết một số câu hỏi trong đề thi nhé! 1. Tính chiều rộng và chiều dài của khu vườn hình chữ nhật khi biết diện tích là 280m2 và chiều dài lớn hơn chiều rộng 6m. 2. Tính C, AB, BC và diện tích tam giác ABC với tam giác ABC vuông tại A, AC = 12cm, B = 60°. 3. Cho điểm A nằm ngoài đường tròn (O) và vẽ hai tiếp tuyến SA, SB (A, B là các tiếp điểm). Chứng minh các điều sau: - Tứ giác SAOB nội tiếp đường tròn. - SA = SC.SD. - Đường thẳng SC đi qua trung điểm của đoạn thẳng BH, với BH vuông góc với AC tại điểm H. Đó là một số câu hỏi trong đề thi tuyển sinh Toán năm 2022 của sở GD&ĐT Bình Phước. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 năm 2022 của trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022 và đề thi bao gồm đề Toán điều kiện, đề Toán chung và đề Toán vòng 1 Đề thi được biên soạn bởi CLB Toán Lim, gồm các thầy cô: Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Khôi Hà, Nguyễn Văn Hoàng và Nguyễn Khang. Đề thi có đáp án và lời giải chi tiết để thí sinh tham khảo. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh: Trên bàn có 8 hộp rỗng, mỗi lần thêm bi vào các hộp theo quy tắc nhất định. Hỏi số lần thêm bi ít nhất để nhận được số bi ở 8 hộp đều là 8 số tự nhiên liên tiếp? Cho hình chữ nhật ABCD nội tiếp trong đường tròn (O). Chứng minh rằng BE cắt CF tại một điểm trên đường tròn (O), và điểm D, M, N thẳng hàng. Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: 25y^2 + 354x + 60 = 36x^2 + 305y + (5y − 6x)^2022. Hãy chuẩn bị kỹ lưỡng và tự tin để đối phó với những thách thức trên kỳ thi tuyển sinh sắp tới! Chúc các em học sinh thành công!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bắc Giang
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Thông báo về Đề tuyển sinh THPT môn Toán năm học 2022 - 2023 Thông báo về Đề tuyển sinh THPT môn Toán năm học 2022 - 2023 Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn Đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức. Đề thi bao gồm 20 câu trắc nghiệm (tương ứng với 3 điểm) và 5 câu tự luận (tương ứng với 7 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Kỳ thi sẽ diễn ra vào thứ Bảy ngày 4 tháng 6 năm 2022.
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Vĩnh Phúc
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Thông báo về Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Vĩnh Phúc Thông báo về Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Vĩnh Phúc Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc. Đề thi bao gồm 04 câu trắc nghiệm (02 điểm) và 06 câu tự luận (08 điểm), thời gian làm bài 120 phút (không tính thời gian giao đề). Kỳ thi được tổ chức vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Vĩnh Phúc: + Cho Parabol (P): y = x^2 và đường thẳng d: y = -2x + m – 1 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) sao cho. + Một phân xưởng cần may 900 bộ quần áo trong thời gian đã định, mỗi ngày may số bộ quần áo như nhau. Khi cải tiến kỹ thuật, mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng cần may bao nhiêu bộ quần áo? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB < AC. Ba đường cao AD, BE, CF của tam giác ABC đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn. b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O; R) và đỉnh A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6