Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu hàm số lượng giác và phương trình lượng giác - Lư Sĩ Pháp

Nhằm cung cấp tài liệu tự học chuyên đề hàm số lượng giác và phương trình lượng giác (Đại số và Giải tích 11 chương 1), thầy Lư Sĩ Pháp biên soạn và giới thiệu tài liệu hàm số lượng giác và phương trình lượng giác. Tài liệu gồm 64 trang với nội dung được chia thành ba phần: + Phần 1. Kiến thức cần nắm. + Phần 2. Dạng bài tập có hướng dẫn giải và bài tập đề nghị. + Phần 3. Phần trắc nghiệm có đáp án. Khái quát nội dung tài liệu hàm số lượng giác và phương trình lượng giác – Lư Sĩ Pháp: ÔN TẬP CÔNG THỨC LƯỢNG GIÁC. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. Dạng 1 . Tập xác định của hàm số. Hàm số xác định với một điều kiện. Hàm số xác định bởi hai hay nhiều điều kiện. Dạng 2 . Xét tính chẵn, lẻ của hàm số. Tìm tập xác định D của hàm số, kiểm chứng D là tập đối xứng hay không. Tính f(-x) và so sánh với f(x). Dạng 3 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Dạng 4 . Chu kì tuần hoàn của hàm số. [ads] BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng 1 . Giải phương trình lượng giác cơ bản. Các công thức nghiệm của bốn phương trình lượng giác cơ bản. Cung đối và cung bù. Dạng 2 . Tìm nghiệm của phương trình trên một khoảng, đoạn. Giải phương trình và tìm nghiệm thỏa khoảng đề bài cho. BÀI 3 . MỘT SỐ DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC ĐƠN GIẢN THƯỜNG GẶP. Dạng 1 . Giải phương trình bậc nhất đối với một hàm số lượng giác. Phương trình dạng at + b = 0 (a khác 0). Một số phương trình biến đổi đưa về phương trình bậc nhất. Từ phương trình đã cho đưa về phương trình lượng giác cơ bản và giải. Dạng 2 . Giải phương trình bậc hai đối với một hàm số lượng giác. Phương trình dạng at2 + bt + c = 0 (a khác 0). Một số phương trình biến đổi đưa về phương trình bậc hai. Từ phương trình đã cho đưa về phương trình lượng giác cơ bản và giải. Lưu ý điều kiện của bài toán (nếu có). Dạng 3 . Phương trình bậc nhất đối với sin và cos. Phương trình có dạng asinx + bcosx + c = 0 (a^2 + b^2 khác 0). Dạng 4 . Phương trình bậc nhất bậc hai đối với sin và cos. Nắm phương pháp giải. Kiểm tra điều kiện của phương trình. ÔN TẬP CHƯƠNG I. BÀI TẬP TRẮC NGHIỆM: 166 câu hỏi và bài tập trắc nghiệm hàm số lượng giác và phương trình lượng giác có đáp án.

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm + tự luận chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Toán 11 phần Đại số và Giải tích chương 1. Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §0 – Công thức lượng giác cần nhớ 1. §1 – HÀM SỐ LƯỢNG GIÁC 3. A KIẾN THỨC CẦN NHỚ 3. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 4. + Dạng 1. Tìm tập xác định của hàm số lượng giác 4. + Dạng 2. Tính chẵn lẻ của hàm số 7. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 8. C BÀI TẬP TRẮC NGHIỆM 13. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 17. A KIẾN THỨC CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 19. + Dạng 1. Giải các phương trình lượng giác cơ bản 19. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 21. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 22. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a;b) cho trước 24. C BÀI TẬP TRẮC NGHIỆM 26. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 29. A KIẾN THỨC CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 30. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 30. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 33. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 37. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 41. + Dạng 5. Phương trình chứa sinx ± cosx và sinx · cosx 43. C BÀI TẬP TRẮC NGHIỆM 45. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 48. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 48. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 48. + Dạng 2. Biến đổi asinx + bcosx 49. + Dạng 3. Biến đổi đưa về phương trình tích 50. + Dạng 4. Một số bài toán biện luận theo tham số 51. B BÀI TẬP TỰ LUYỆN 55. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 57. A Đề số 1 57. B Đề số 2 60. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 63.
Vẻ đẹp lời giải hình học qua các bài toán lượng giác
Tài liệu gồm 09 trang, được biên soạn bởi Ths. Hoàng Minh Quân (giáo viên Toán trường THPT chuyên Nguyễn Huệ, Hà Nội), trình bày vẻ đẹp lời giải hình học qua các bài toán lượng giác. Trong chương trình toán THPT, để chứng minh một số hệ thức lượng giác, ta thường sử dụng các biến đổi lượng giác. Câu hỏi đặt ra, ngoài các cách biến đổi lượng giác thì ta có cách tiếp cận nào khác để giải quyết vấn đề không? Để trả lời câu hỏi này, bài viết sau đây mời bạn đọc cùng đến với hướng tiếp cận hình học cho chứng minh một số hệ thức lượng giác. I. CÁC ĐẲNG THỨC LƯỢNG GIÁC. II. BẤT ĐẲNG THỨC LƯỢNG GIÁC. III. BÀI TẬP TỰ LUYỆN.
Hàm số lượng giác và phương trình lượng giác - Lê Minh Tâm
Tài liệu gồm 124 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, phân loại và hướng dẫn giải các dạng bài tập chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. I. Ôn tập. 1.1. Các hệ thức cơ bản. 1.2. Cung liên kết. 1.3. Công thức cộng. 1.4. Công thức nhân và hạ bậc. 1.5. Công thức biến đổi tổng thành tích. 1.6. Công thức biến đổi tích thành tổng. 1.7. Bảng giá trị lượng giác của một số góc đặc biệt. II. Hàm số y = sinx và hàm số y = cosx. III. Hàm số y = tanx và hàm số y = cotx. IV. Bài tập. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Tính chẵn lẻ của hàm số lượng giác. Dạng 03. Chu kỳ hàm số lượng giác. Dạng 04. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. I. Phương trình sinx = a và phương trình cosx = a. II. Phương trình tanx = a và phương trình cotx = a. III. Bài tập. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI THEO HÀM LƯỢNG GIÁC. I. Dạng cơ bản. II. Bài tập. BÀI 4 . PHƯƠNG TRÌNH BẬC NHẤT VỚI HÀM SIN – COS. I. Dạng cơ bản. II. Bài tập. BÀI 5 . PHƯƠNG TRÌNH ĐẲNG CẤP. I. Dạng cơ bản. II. Bài tập. BÀI 6 . PHƯƠNG TRÌNH ĐỐI XỨNG. I. Dạng cơ bản. II. Bài tập. BÀI 7 . CÁC LOẠI PHƯƠNG TRÌNH KHÁC. I. Biến đổi tích thành tổng. 1.1. Ví dụ minh họa. 1.2. Bài tập rèn luyện. II. Biến đổi tổng thành tích. 2.1. Ví dụ minh họa. 2.2. Bài tập rèn luyện. III. Tổng hợp các phương pháp. 3.1. Ví dụ minh họa. 3.2. Bài tập rèn luyện. IV. Phương trình lượng giác có điều kiện. 4.1. Ví dụ minh họa. 4.2. Bài tập rèn luyện. BÀI 8 . TỔNG ÔN ĐẠI SỐ VÀ GIẢI TÍCH 11 CHƯƠNG I. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác. Dạng 03. Phương trình lượng giác. Dạng 04. Tổng hợp phương trình lượng giác.
Trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1)
Tài liệu gồm 188 trang, tổng hợp trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): hàm số lượng giác và phương trình lượng giác; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. Mục lục tài liệu trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): PHẦN I . TỰ LUẬN (Trang 1). BÀI 1 . HÀM SỐ LƯỢNG GIÁC (Trang 1). VẤN ĐỀ 01. Tìm tập xác định của hàm số (Trang 4). VẤN ĐỀ 02. Xét tính chẵn, lẻ của hàm số (Trang 6). VẤN ĐỀ 03. Xét tính tuần hoàn và tìm chu kỳ của hàm số (Trang 7). VẤN ĐỀ 04. Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số (Trang 9). VẤN ĐỀ 05: Vẽ đồ thị của một hàm số suy ra từ một đồ thị của hàm số đã biết (Trang 16). BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC (Trang 21). VẤN ĐỀ 01. Phương trình lượng giác cơ bản (Trang 21). VẤN ĐỀ 02. Một số phương pháp giải phương trình lượng giác (Trang 35). VẤN ĐỀ 03. Bài tập tổng hợp (Trang 45). BÀI 3 . BÀI TẬP TRONG ĐỀ ĐH – CĐ CÁC NĂM TRƯỚC (Trang 68). Dạng 1. Công thức lượng giác (Trang 68). Dạng 2. Đưa về phương trình tích (Trang 69). Dạng 3. Biến đổi tổng thành tích – tích thành tổng (Trang 73). Dạng 4. Phương trình bậc 2 – bậc 3 (Trang 75). Dạng 5. Phương trình bậc nhất theo sinx, cosx (Trang 80). Dạng 6. Phương trình đẳng cấp (Trang 83). Dạng 7. Phương trình đối xứng (Trang 84). Dạng 8. Phương pháp hạ bậc (Trang 84). Dạng 9. Công thức nhân ba (Trang 89). Dạng 10. Phương trình có chứa giá trị tuyện đối. Phương trình có chứa căn thức (Trang 87). Dạng 11. Phương trình có chứa tham số (Trang 89). PHẦN II . TRẮC NGHIỆM (Trang 90). A – ĐỀ BÀI (Trang 90). B – BẢNG ÐÁP ÁN (Trang 124). C – HƯỚNG DẪN GIẢI (Trang 125). Trong mỗi dạng bài, tài liệu tóm tắt lý thuyết SGK, hướng dẫn phương pháp giải toán, kèm theo các ví dụ minh họa từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6