Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hệ thống bài tập trắc nghiệm VDC, phân loại khảo sát hàm số (phần 1 10)

Nguồn: onluyen.vn

Đăng nhập để đọc

191 bài tập trắc nghiệm thể tích khối lăng trụ - Nguyễn Bảo Vương
Tài liệu gồm 191 bài tập trắc nghiệm thể tích khối lăng trụ do thầy Nguyễn Bảo Vương sưu tầm và biên soạn, gồm 32 trang. Trích dẫn tài liệu: 1. Cho hình lăng trụ tam giác có đáy là tam giác đều cạnh a, khoảng cách giữa 2 đáy bằng 3a. Thể tích khối lăng trụ là? 2. Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh bằng a, hình chiếu của A lên (A’B’C’) là trung điểm I của A’B’, góc giữa AC’ và mặt đáy bằng 60 độ. Thể tích của khối lăng trụ đó là? 3. Cho khối lăng trụ ABCD.A’B’C’D’ có thể tích 36cm3. Gọi M là điểm bất kỳ thuộc mặt phẳng (ABCD). Thể tích khối chóp M.A’B’C’D’ là? [ads]
Bài tập trắc nghiệm thể tích khối chóp - Trần Đình Cư
Tài liệu bài tập trắc nghiệm thể tích khối chóp do thầy Trần Đình Cư biên soạn và gửi tặng các em học sinh nhân dịp Giáng sinh 2016. Tài liệu được phân thành 5 dạng: Dạng 1. Khối chóp có cạnh bên vuông góc đáy Một số chú ý khi giải toán: + Một hình chóp có một cạnh bên vuông góc với đáy thì cạnh bên đó chính là đường cao. + Một hình chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì cạnh bên là giao tuyến của hai mặt đó vuông góc với đáy. Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy Dạng 3. Khối chóp có mặt bên vuông góc với đáy  Để xác định đường cao hình chóp ta vận dụng định lí sau: Nếu (α) ⊥ (β), (α) ∩ (β) = d, a ⊂ (α), a ⊥ d thi a ⊥ (β). Dạng 4. Khối chóp đều 1. Định nghĩa: Một hình chóp được gọi là hình chóp đều nếu đáy của nó là một đa giác đều và các cạnh bên bằng nhau 2. Kết quả: Trong hình chóp đều: + Đường cao hình chóp qua tâm của đa giác đáy. + Các cạnh bên tạo với đáy các góc bằng nhau. + Các mặt bên tạo với đáy các góc bằng nhau. [ads] Chú ý : + Đề bài cho hình chóp tam giác đều (tứ giác đều) ta hiểu là hình chóp đều. + Hình chóp tam giác đều khác với hình chóp có đáy là đa giác đều vì hình chóp tam giác đều thì bản thân nó có đáy là tam giác đều và các cạnh bên bằng nhau, nói một cách khác, hình chóp tam giác đều thì suy ra hình chóp có đáy là tam giác đều nhưng điều ngược lại là không đúng. + Hình chóp tứ giác đều là hình chóp đều có đáy là hình vuông. Dạng 5. Tỉ lệ thể tích Việc tính thể tích của một khối chóp thường học sinh giải bị nhiều sai sót. Tuy nhiên trong các đề thi lại yêu cầu học sinh tính thể tích của một khối chóp “nhỏ” của khối chóp đã cho. Khi đó học sinh có thể thực hiện các cách sau: Cách 1: + Xác định đa giác đáy. + Xác định đường cao ( phải chứng minh đường cao vuông gới với mặt phẳng đáy). + Tính thể tích khối chóp theo công thức. Cách 2 + Xác định đa giác đáy. + Tính các tỷ số độ dài của đường cao (nếu cùng đa giác đáy) hoặc diện tích đáy (nếu cùng đường cao) của khối chóp “nhỏ” và khối chóp đã cho và kết luận thể tích khối cần tìm bằng k lần thể tích khối đã cho. Cách 3: Dùng tỷ số thể tích (Chỉ áp dụng cho khối chóp (tứ diện)). Hai khối chóp S.MNK và S.ABC có chung đỉnh S và góc ở đỉnh S. Ta có : VS.MNK/VS.ABC = SM/SA.SN/SB.SK/SC
195 bài tập trắc nghiệm thể tích khối đa diện nâng cao - Nguyễn Bảo Vương
Tài liệu 195 bài tập trắc nghiệm thể tích khối đa diện nâng cao – Nguyễn Bảo Vương gồm các câu hỏi ở mức độ vận dụng cao dành cho học sinh khá giỏi, có đáp án nằm ở cuối tài liệu. Trích dẫn tài liệu : + Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, góc giữa cạnh bên và đáy bằng 30 độ. Hình chiếu vuông góc của A trên mặt phẳng (A’B’C’) là trung điểm của B’C’. Khi đó góc giữa hai đường thẳng BC và AC’ là? + Với một tấm bìa hình vuông, người ta cắt bỏ ở mỗi góc tấm bìa một hình vuông cạnh 12cm (hình 2) rồi gấp lại thành một hình hộp chữ nhật không có nắp. Giả sử dung tích của cái hộp đó là 4800cm3 thì cạnh của tấm bìa ban đầu có độ dài là? [ads] + Cho một tấm nhôm hình vuông cạnh 12dm. Người ta cắt ở bốn góc bốn hình vuông bằng nhau rồi gặp tấm nhôm lại (hình 3) để được một cái hộp chữ nhật không nắp. Tính cạnh của các hình vuông được cắt bỏ sao cho thể tích của khối hộp đó lớn nhất ? + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 45 độ. Thể tích khối chóp S.ABC tính theo a là? + Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAC = 60 độ, mặt bên SAB là tam giác cân và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt phẳng (SCD) tạo với mặt đáy góc 30 độ. Khoảng cách giữa hai đường thẳng SB và AD là?
395 bài tập trắc nghiệm thể tích khối đa diện cơ bản - Nguyễn Bảo Vương
Tài liệu 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản – Nguyễn Bảo Vương gồm 85 trang với phần tóm tắt lý thuyết, công thức tính và 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản, dành cho học sinh trung bình, có đáp án ở cuối tài liệu. Nội dung tài liệu : + ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9-10 + ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P). Định lý 2 : Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. Định lý 3 : Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. Định lý 2 : Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. Định lý 3 : Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. [ads] B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I. Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. II. Các định lý Định lý 1 : Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). Định lý 2 : (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). §2.HAI MẶT PHẲNG VUÔNG GÓC I. Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90 độ. II. Các định lý Định lý 1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. Định lý 2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). Định lý 3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P). Định lý 4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)). 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì S’ = Scosα, trong đó α là góc giữa hai mặt phẳng (P) và (P’). ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. THỂ TÍCH KHỐI ĐA DIỆN LOẠI 1: THỂ TÍCH LĂNG TRỤ Dạng 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy Dạng 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng 3. Lăng trụ đứng có góc giữa 2 mặt phẳng Dạng 4. Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Dạng 1. Khối chóp có cạnh bên vuông góc với đáy Dạng 2. Khối chóp có một mặt bên vuông góc với đáy Dạng 3. Khối chóp đều Dạng 4. Khối chóp & phương pháp tỷ số thể tích

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6