Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Các thầy cô và các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2022 – 2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Dưới đây là trích dẫn các câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Hà Nội: 1. Tìm tất cả các số nguyên dương a, b và c sao cho các phương trình x2 – 2ax + b = 0, x2 – 2bx + c = 0 và x2 – 2cx + a = 0 đều có nghiệm là các số nguyên dương. 2. Trong tam giác ABC với AB < AC, nội tiếp đường tròn (O). Ba đường cao AD, BE và CF cùng đi qua điểm H. Gọi I và K lần lượt là trung điểm của các đoạn thẳng EF và BC. a) Chứng minh AI/AK = HI/HK. b) Chứng minh đường thẳng AH là tiếp tuyến của đường tròn ngoại tiếp tam giác IHK. c) Gọi P là chân đường vuông góc kẻ từ điểm H đến đường thẳng EF. Chứng minh đường thẳng DP song song với đường thẳng AI. 3. Trên bảng có hai số tự nhiên m và n. An và Bình chơi trò chơi loại bỏ số như sau: Mỗi lượt chơi, một người chơi chọn một số trên bảng để loại bỏ và thay thế bằng hiệu không âm của số đó với một ước số tự nhiên bất kỳ của số đó. Hai bạn chơi lần lượt và người không thể thực hiện lượt chơi là người thua cuộc. Biết rằng An chơi lượt đầu tiên, hãy chỉ ra chiến thuật để An chiến thắng với m = 2022 và n = 2023, cũng như với m = 2022 và n = 1981.
Nguồn: sytu.vn