Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội

Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Các thầy cô và các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2022 – 2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Dưới đây là trích dẫn các câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Hà Nội: 1. Tìm tất cả các số nguyên dương a, b và c sao cho các phương trình x2 – 2ax + b = 0, x2 – 2bx + c = 0 và x2 – 2cx + a = 0 đều có nghiệm là các số nguyên dương. 2. Trong tam giác ABC với AB < AC, nội tiếp đường tròn (O). Ba đường cao AD, BE và CF cùng đi qua điểm H. Gọi I và K lần lượt là trung điểm của các đoạn thẳng EF và BC. a) Chứng minh AI/AK = HI/HK. b) Chứng minh đường thẳng AH là tiếp tuyến của đường tròn ngoại tiếp tam giác IHK. c) Gọi P là chân đường vuông góc kẻ từ điểm H đến đường thẳng EF. Chứng minh đường thẳng DP song song với đường thẳng AI. 3. Trên bảng có hai số tự nhiên m và n. An và Bình chơi trò chơi loại bỏ số như sau: Mỗi lượt chơi, một người chơi chọn một số trên bảng để loại bỏ và thay thế bằng hiệu không âm của số đó với một ước số tự nhiên bất kỳ của số đó. Hai bạn chơi lần lượt và người không thể thực hiện lượt chơi là người thua cuộc. Biết rằng An chơi lượt đầu tiên, hãy chỉ ra chiến thuật để An chiến thắng với m = 2022 và n = 2023, cũng như với m = 2022 và n = 1981.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Nai
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Đồng Nai Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Đồng Nai Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Đồng Nai được thiết kế với 5 bài toán tự luận, trong đó có một số bài toán như sau: 1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi (P) và (Q) lần lượt là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) và nó cắt AB, AH, AC lần lượt tại M, K, N. Cần chứng minh tam giác HPQ đồng dạng với tam giác ABC. 2. Chứng minh rằng đoạn PK song song với đoạn AB và tứ giác BMNC là một tứ giác nội tiếp. 3. Xác định rằng năm điểm A, M, P, Q, N đều trên một đường tròn duy nhất. 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết rằng AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Yêu cầu tính giá trị lớn nhất của diện tích tam giác IDE theo a. Đề thi này đòi hỏi sự hiểu biết sâu rộng về kiến thức toán học, cũng như khả năng suy luận và chứng minh logic. Hãy cố gắng giải quyết từng bài toán một một cách cẩn thận để đạt được kết quả tốt nhất.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Cần Thơ
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ là bài thi quan trọng để học sinh có cơ hội vào học tập ở trường phổ thông trung học. Đề thi gồm 6 bài toán tự luận có lời giải chi tiết, giúp học sinh ôn tập và kiểm tra kiến thức của mình. Một số bài toán trong đề thi: - Đề thi có bài toán về việc tổ chức thi đấu môn bóng bàn đánh đôi nam nữ trong lớp học. Học sinh cần phải tính toán để tìm ra số học sinh trong lớp 9A. - Bài toán về tam giác ABC và đường tròn (O) cắt các cạnh của tam giác, học sinh cần chứng minh và tính toán các đại lượng liên quan. Với những bài toán phức tạp như vậy, học sinh cần phải có kiến thức vững chắc và khả năng giải quyết vấn đề một cách logic. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng toán học mà còn phản ánh khả năng tư duy logic và khả năng giải quyết vấn đề của học sinh. Chắc chắn rằng việc ôn tập và giải đề thi này sẽ giúp học sinh tự tin hơn trong kỳ thi tuyển sinh và có cơ hội đậu vào trường phổ thông trung học mong muốn.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đăk Lăk
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đăk Lăk Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk bao gồm 5 bài toán tự luận, có lời giải chi tiết. Dưới đây là một số bài toán trong đề: 1. Tính chiều dài và chiều rộng của một hình chữ nhật. Biết rằng nếu tăng cả chiều dài và chiều rộng lên 4cm thì ta được một hình chữ nhật có diện tích tăng thêm 80cm2 so với diện tích của hình chữ nhật ban đầu, còn nếu tăng chiều dài lên 5cm và giảm chiều rộng xuống 2cm thì ta được một hình chữ nhật có diện tích bằng diện tích của hình chữ nhật ban đầu. 2. Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K. Chi tiết phân tích các câu hỏi trong đề: 1) Chứng minh rằng tứ giác OMHQ nội tiếp 2) Chứng minh rằng góc OMH = góc OIP 3) Chứng minh rằng khi điểm M di chuyển trên đường thẳng d thì điểm I luôn cố định 4) Biết OH = R. căn (2), tính IP.IQ Đây là một đề thi đầy thách thức và đòi hỏi sự tư duy logic, khả năng phân tích và giải quyết vấn đề của thí sinh. Mong rằng các em sẽ tự tin và thành công khi tham gia kỳ thi tuyển sinh.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) bao gồm 4 bài toán tự luận. Trong đó: + Bài toán thứ nhất: Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Yêu cầu là kẻ số đường chéo của đa giác sao cho chúng chia đa giác thành đúng k miền, mỗi miền là một ngũ giác lồi (không có điểm chung). Phần a của bài toán yêu cầu chứng minh rằng với n=2018, k=672, ta có thể thực hiện được. Phần b của bài toán đặt câu hỏi liệu với n=2017, k=672 ta có thể thực hiện được không và yêu cầu giải thích. + Bài toán thứ hai: Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức p(p – 1) = q(q^2 – 1). Phần a của bài toán yêu cầu chứng minh rằng tồn tại số nguyên dương K sao cho p – 1 = kq và q^2 – 1 = kp. Phần b của bài toán yêu cầu tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức đề bài. Đề thi này đòi hỏi sự tỉ mỉ, logic và khả năng phân tích của thí sinh để giải quyết các bài toán. Hy vọng sẽ có nhiều thí sinh tài năng đạt kết quả cao khi tham gia bài thi này.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6