Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Cà Mau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Theo các chuyên gia về sức khỏe, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khỏe. Để rèn luyện sức khỏe, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước. Hai người cùng đi bộ ở công viên và thấy rằng, nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bươc tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Cho phương trình: 2 2 x m x m m 2 1 4 7 0 (m là tham số). a) Tìm m để phương trình đã cho có nghiệm. b) Tìm m để phương trình đã cho có hai nghiệm âm phân biệt. + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O. Hai tiếp tuyến tại B và C của đường tròn O cắt nhau tại M, tia AM cắt đường tròn O tại điểm D. a) Chứng minh rằng tứ giác OBMC nội tiếp được đường tròn. b) Chứng minh 2 MB MD MA. c) Gọi E là trung điểm của đoạn thẳng AD; tia CE cắt đường tròn O tại điểm F. Chứng minh rằng: BF AM.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề khảo sát Toán tuyển sinh 10 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán 9 tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn đề khảo sát Toán tuyển sinh 10 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Một lon nước ngọt hình trụ có bán kính đáy là 3cm, đường cao gấp 4 lần bán kính đáy. Tính thể tích lon nước đó. + Cho nửa đường tròn (O; R) đường kính BC. Gọi H là trung điểm của OB. Đường thẳng d vuông góc với BC tại H cắt nửa đường tròn trên ở A. Trên cung AC lấy điểm M (M không trùng với A và C). Tia CM cắt đường thẳng d ở E. BM cắt đường thẳng d ở F và BE cắt nửa đường tròn trên ở Q. a) Chứng minh tứ giác BHME nội tiếp một đường tròn. b) Chứng minh tứ giác EQHC nội tiếp và tính giá trị của biểu thức AC2 + BQ.BE theo R. c) Chứng minh rằng khi M di động trên cung AC thì đường tròn ngoại tiếp tam giác BFE luôn đi qua hai điểm cố định. + Cho hai biểu thức 1) Tính giá trị của biểu thức A khi x = 9. 2) Rút gọn biểu thức B. 3) Tìm tất cả các giá trị của x để biểu thức P = A.B nhận giá trị là số nguyên.
Đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 02 trang với 10 câu trắc nghiệm khách quan (chiếm 2.5 điểm) và 04 câu tự luận (chiếm 7.5 điểm), thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết, bảng đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Vũ Hưng và thầy giáo Nguyễn Quang. Trích dẫn đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Trên một cái thang dài 3,5m người ta ghi: “Để đảm bảo an toàn khi sử dụng, phải đặt thang tạo với mặt đất một góc có độ lớn từ 60 đến 70 độ”. Gọi x m x 0 là khoảng cách từ chân thang đến chân tường. Để đảm bảo an toàn khi sử dụng thì điều kiện của x là? + Cho parabol 2 P y x và đường thẳng d y mx 3 2. a) Viết phương trình đường thẳng đi qua hai điểm A và B. Biết hai điểm A và B đều thuộc parabol P có hoành độ lần lượt là [1;2]. b) Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt 1 1 C x y 2 2 D x y sao cho 2 2 2 1 2 1 T y y x x 10 đạt giá trị nhỏ nhất. + Cho đường tròn O và dây BC không đi qua O. Điểm A thuộc cung lớn BC (A khác B C), M là điểm chính giữa cung nhỏ BC. Hai tiếp tuyến của O tại C và M cắt nhau ở N. Gọi K là giao điểm của đường thẳng AB và CM, tia AM cắt tia CN tại P, hai đoạn thẳng AM và BC cắt nhau tại Q. Chứng minh rằng a) Tứ giác ACPK nội tiếp đường tròn b) MN song song với BC. c) 1 1 1 CN KP CQ.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán và chuyên Tin) năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc : + Cho hình thang ABCD (AD song song với BC, AD < BC). Các điểm E, F lần lượt thuộc các cạnh AB, CD. Đường tròn ngoại tiếp tam giác AEF cắt đường thẳng AD tại M (M không trùng với A và D, D nằm giữa A và M), đường tròn ngoại tiếp tam giác CEF cắt đường thẳng BC tại điểm N (N không trùng với B và C, B nằm giữa C và N). Đường thẳng AB cắt đường thẳng CD tại điểm P, đường thẳng EN cắt đường thẳng FM tại điểm Q. Chứng minh rằng: a) Tứ giác EFQP nội tiếp đường tròn. b) PQ song song với BC và tâm đường tròn ngoại tiếp các tam giác PQE, AMF, CEN cùng nằm trên một đường thẳng cố định. c) Các đường thẳng MN, BD, EF đồng quy tại một điểm. + Thầy Quyết viết các số nguyên 1, 2, 3,…., 2021, 2002 lên bảng. Thầy Quyết thực hiện việc thay số như sau: Mỗi lần thay số, thầy chọn ra hai số bất kì trên bảng, xóa hai số này đi và viết lên bảng số trung bình cộng của hai số vừa xóa. Sau 2021 lần thay số như vậy, trên bảng còn lại duy nhất một số. a) Chứng minh rằng số còn lại trên bảng có thể là số 2021. b) Chứng minh rằng số còn lại trên bảng có thể là số 2006. + Tìm tất cả các bộ ba số nguyên dương a b c sao cho a 2 a b c b 2 2 là số chính phương.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Long; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 05 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Long : + Chứng minh rằng tổng các bình phương của 6 số nguyên liên tiếp không thể là số chính phương. + Cho hình vuông ABCD và điểm E trên cạnh BC biết AB = 4cm, 3 4 BE BC. Tia Ax vuông góc với AE tại A cắt tia CD tại F. a) Tính diện tích AEF. b) Gọi I là trung điểm của đoạn thẳng EF, tia AI cắt CD tại K. Chứng minh: 2 AE KF CF. + Cho (O;R) và điểm M sao cho OM = 2R. Kẻ các tiếp tuyến MA, MB với O (A, B là các tiếp điểm). Trên đoạn thẳng AB lấy điểm I (Với AI < BI và I khác A). Qua I vẽ dây CD sao cho IC = ID và C thuộc cung nhỏ AB. Tiếp tuyến của O tại C cắt OI tại Q. Chứng minh: a) Tứ giác OCQD nội tiếp được đường tròn. b) AMB là tam giác đều. c) OQ MQ.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6