Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Thuận

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Thuận Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bình Thuận Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bình Thuận Sytu xin gửi đến quý thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021 - 2022 của Sở Giáo dục và Đào tạo Bình Thuận. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 12 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 của Sở GD&ĐT Bình Thuận gồm các câu hỏi sau: Cho x, y, z là các số thực dương thỏa mãn x + y + z = 3. Chứng minh rằng? Cho đường tròn tâm O, đường kính AB. Trên đường tròn lấy điểm D khác A và B sao cho mDAB > 60°. Trên đường kính AB lấy điểm C khác A, B và kẻ HC vuông góc với AD tại H. Phân giác trong của góc DAB cắt đường tròn tại E (E khác A) và cắt HC tại F.DF cắt đường tròn tại điểm thứ hai N. a) Chứng minh ba điểm N, C, E thẳng hàng. b) Cho AD = BC, chứng minh DN đi qua trung điểm của AC. Viết lên bảng 2021 số. Thực hiện thao tác: xóa ba số x, y, z bất kì trên bảng và viết lại số x + y + z + xy + yz + zx + xyz. Tiếp tục thực hiện cho đến khi trên bảng chỉ còn một số. Hỏi đó là số nào? Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 của Sở GD&ĐT Bình Thuận thú vị và đa dạng, giúp các em học sinh rèn luyện và phát triển kỹ năng giải quyết vấn đề một cách logic và sáng tạo.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh (đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Bắc Ninh : + Cho đường tròn (C) có đường kính AB. Lấy điểm C thuộc đoạn AO (C khác A O). Vẽ đường tròn (I) đường kính BC. Vẽ tiếp tuyến AD và cát tuyến AEF với đường tròn (I) (E nằm giữa A F) sao cho tia AO nằm giữa 2 tia AD AE. Đường thẳng vuông góc với AB từ C cắt đường tròn (O) tại hai điểm gọi một điểm là N sao cho N, D thuộc hai nửa mặt phẳng đối nhau bờ AB. Gọi S là giao điểm của hai đường thẳng DI và NB. R là giao DN và AS. Gọi J là trung điểm SD. a) Chứng minh tam giác AND cân. b) L T lần lượt là tìm đường tròn ngoại tiếp các tam giác SBC và SEF. Chứng minh ba điểm J L T thẳng hàng. + Cho hình vuông ABCD có diện tích là S. Tứ giác MNPQ có bốn đỉnh M N P Q thuộc AB BC CD DA và 4 đỉnh này không trùng 4 đỉnh hình vuông. Chứng minh S AC MN NP PQ QM 4. + Có 10 bạn học sinh tham gia thi đấu bóng bàn. Hai bạn bất kì đều phải đấu với nhau một trận, bạn nào cũng gặp 9 đối thủ của mình và không có trận nào hòa. Chứng minh rằng luôn xếp được 10 bạn thành 1 hàng dọc sao cho bạn đứng trước thắng bạn đứng kề sau.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho phương trình x2 – (2m – 1)x + m2 – m – 2 = 0 với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 thỏa mãn x13 + x23 – 5x1x2 = 10m + 15. + Cho hình chữ nhật ABCD có chiều dài bằng 47cm, chiều rộng bằng 43cm. Chứng minh rằng trong số 2022 điểm bất kì nằm trong hình chữ nhật ABCD luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 2 cm. + Cho đường tròn (O; R) và hai điểm P, Q nằm ngoài (O) sao cho góc POQ vuông, PQ không cắt (O). Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A, B là hai tiếp điểm; tia PA nằm giữa hai tia PQ và PO). Hai cát tuyến PDC, QEC thay đổi của (O) cùng đi qua C (D nằm giữa P và C; E nằm giữa Q và C). Tia PE cắt đường tròn tại điểm thứ hai F (F khác E). H là giao điểm của AB và OP. Chứng minh rằng: 1) Tích PE.PF không đổi. 2) AHE = AHF. 3) Đường tròn ngoại tiếp tam giác PDF luôn đi qua một điểm cố định.
Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E (hình vẽ bên). Tính diện tích phần tô đậm trong hình vẽ bên. + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Gọi I là trung điểm của đoạn PQ, J là giao điểm của hai đường thẳng AQ và MN. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. + Cho x, y, z là các số thực dương thay đổi. Tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi mã đề 482 gồm 20 câu trắc nghiệm (04 điểm – 30 phút) và 04 câu tự luận (06 điểm – 06 phút); đề thi có đáp án và lời giải chi tiết (hướng dẫn được thực hiện bởi tác giả DUC PV). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bắc Ninh : + Một người đi xe đạp từ A đến B cách nhau 15km. Khi từ B về A người đó tăng vận tốc thêm 3km/h. Vì vậy, thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn (O; R) và dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt đường tròn (O; R) tại điểm K (K khác B). a) Chứng minh AKCE là tứ giác nội tiếp. b) Chứng minh BM2 = BK.BC. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI. Chứng minh C cách đều ba cạnh của 4DEK. + Chứng minh rằng nếu tất cả các cạnh của một tam giác nhỏ hơn 2 thì diện tích của tam giác đó nhỏ hơn √3.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6