Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trọn bộ phương pháp giải phương trình - Hệ phương trình - Nguyễn Anh Huy

Phương trình là một trong những phân môn quan trọng nhất của Đại số vì có những ứng dụng rất lớn trong các ngành khoa học. Sớm được biết đến từ thời xa xưa do nhu cầu tính toán của con người và ngày càng phát triển theo thời gian, đến nay, chỉ xét riêng trong Toán học, lĩnh vực phương trình đã có những cải tiến đáng kể, cả về hình thức (phương trình hữu tỉ, phương trình vô tỉ, phương trình mũ – logarit) và đối tượng (phương trình hàm, phương trình sai phân, phương trình đạo hàm riêng . . .) Còn ở Việt Nam, phương trình, từ năm lớp 8, đã là một dạng toán quen thuộc và được yêu thích bởi nhiều bạn học sinh. Lên đến bậc THPT, với sự hỗ trợ của các công cụ giải tích và hình học, những bài toán phương trình – hệ phương trình ngày càng được trau chuốt, trở thành nét đẹp của Toán học và một phần không thể thiếu trong các kì thi Học sinh giỏi, thi Đại học. Đã có rất nhiều bài viết về phương trình – hệ phương trình, nhưng chưa thể đề cập một cách toàn diện về những phương pháp giải và sáng tạo phương trình. Nhận thấy nhu cầu có một tài liệu đầy đủ về hình thức và nội dung cho cả hệ chuyên và không chuyên, Diễn đàn MathScope đã tiến hành biên soạn quyển sách Chuyên đề phương trình và hệ phương trình mà chúng tôi hân hạnh giới thiệu đến các thầy cô giáo và các bạn học sinh. Quyển sách này gồm 6 chương, với các nội dung như sau: [ads] + Chương I : Đại cương về phương hữu tỉ cung cấp một số cách giải tổng quát phương trình bậc ba và bốn, ngoài ra còn đề cập đến phương trình phân thức và những cách xây dựng phương trình hữu tỉ. + Chương II : Phương trình và hệ phương trình có tham số đề cập đến các phương pháp giải và biện luận bài toán có tham số ,cũng như một số bài toán thường gặp trong các kì thi Học sinh giỏi. + Chương III : Các phương pháp giải phương trình chủ yếu tổng hợp những phương pháp quen thuộc như bất đẳng thức, lượng liên hợp, hàm số đơn điệu . . . với nhiều bài toán mở rộng nhằm giúp bạn đọc có cách nhìn tổng quan về phương trình. Chương này không đề cập đến Phương trình lượng giác, vì vấn đề này đã có trong chuyên đề Lượng giác của Diễn đàn. + Chương IV : Phương trình mũ – logarit đưa ra một số dạng bài tập ứng dụng của hàm số logarit, với nhiều phương pháp biến đổi đa dạng như đặt ẩn phụ, dùng đẳng thức, hàm đơn điệu … + Chương V : Hệ phương trình là phần trọng tâm của chuyên đề. Nội dung của chương 7 bao gồm một số phương pháp giải hệ phương trình và tổng hợp các bài hệ phương trình hay trong những kì thi học sinh giỏi trong nước cũng như quốc tế. + Chương VI : Sáng tạo phương trình và hệ phương trình đưa ra những cách xây dựng một bài hay và khó từ những phương trình đơn giản bằng các công cụ mới như số phức, hàm hyperbolic, hàm đơn điệu . . . Ngoài ra còn có hai phần Phụ lục cung cấp thông tin ứng dụng phương trình và hệ phương trình trong giải toán và về lịch sử phát triển của phương trình. Chúng tôi xin ngỏ lời cảm ơn tới những thành viên của Diễn đàn đã chung tay xây dựng chuyên đề. Đặc biệt xin chân thành cảm ơn thầy Châu Ngọc Hùng, thầy Nguyễn Trường Sơn, anh Hoàng Minh Quân, anh Lê Phúc Lữ, anh Phan Đức Minh vì đã hỗ trợ và đóng góp những ý kiến quý giá cho chuyên đề, bạn Nguyễn Trường Thành vì đã giúp ban biên tập kiểm tra các bài viết để có một tuyển tập hoàn chỉnh. Niềm hi vọng duy nhất của những người làm chuyên đề là bạn đọc sẽ tìm thấy nhiều điều bổ ích và tình yêu toán học thông qua quyển sách này. Chúng tôi xin đón nhận và hoan nghênh mọi ý kiến xây dựng của bạn đọc để chuyên đề được hoàn thiện hơn. Mọi góp ý xin vui lòng chuyển đến [email protected]

Nguồn: toanmath.com

Đăng nhập để đọc

12 phương pháp giải và biện luận phương trình chứa căn thức
Tài liệu gồm 93 trang trình bày 12 phương pháp giải và biện luận phương trình chứa căn thức, đi kèm với đó là các ví dụ minh họa có lời giải chi tiết với nhiều biến dạng và độ khó tăng dần. Các phương pháp giải và biện luận phương trình chứa căn thức được trình bày trong tài liệu gồm: + Phương pháp 1. Lũy thừa hai vế và sử dụng các công thức cơ bản. + Phương pháp 2. Đưa về dạng tích. + Phương pháp 3. Đặt ẩn phụ toàn phần. + Phương pháp 4. Đặt ẩn phụ không hoàn toàn. + Phương pháp 5. Đặt hai ẩn đưa về phương trình tích hoặc tổng các đại lượng không âm. + Phương pháp 6. Đặt ẩn phụ đưa về hệ phương trình. + Phương pháp 7. Phương pháp lượng giác hóa. + Phương pháp 8. Dùng phương pháp đối lập. + Phương pháp 9. Phương pháp khảo sát hàm số. + Phương pháp 10. Phương pháp đồ thị. + Phương pháp 11. Phương pháp tam thức bậc hai. + Phương pháp 12. Phương pháp vectơ.
Các dạng toán phương trình và hệ phương trình - Trần Quốc Nghĩa
Tài liệu gồm 88 trang tuyển tập phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm có đáp án các dạng toán chủ đề phương trình và hệ phương trình trong chương 3 Đại số 10. Nội dung tài liệu : Vấn đề 1. Đại cương về phương trình + Dạng 1. Tìm điều kiện của phương trình + Dạng 2. Giải phương trình bằng cách biến đổi tương đương hoặc dùng phương trình hệ quả Vấn đề 2. Phương trình bậc nhất: ax + b = 0 + Dạng 1. Giải và biện luận phương trình ax + b = 0 + Dạng 2. Phương trình có nghiệm, vô nghiệm Vấn đề 3. Phương trình bậc hai: ax^2 + bx + c = 0 + Dạng 1. Giải và biện luận phương trình ax^2 + bx + c = 0 + Dạng 2. Điều kiện có nghiệm, vô nghiệm + Dạng 3. Dùng phương pháp đồ thị để biện luận số nghiệm của phương trình bậc hai bằng đồ thị + Dạng 4. Dấu của nghiệm số [ads] + Dạng 5. Tìm hệ thức độc lập đối với tham số + Dạng 6. Lập phương trình bậc hai khi biết 2 nghiệm + Dạng 7. Không giải phương trình, tính giá trị các hệ thức chứa 2 nghiệm x1, x2 của phương trình ax^2 + bx + c = 0 + Dạng 8. Xác định m để phương trình ax^2 + bx + c = 0 có 2 nghiệm x1, x2 thỏa điều kiện (*) cho trước Vấn đề 4. Một số phương trình quy về phương trình bậc nhất hoặc bậc hai + Dạng 1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối + Dạng 2. Phương trình chứa ẩn ở mẫu + Dạng 3. Phương trình chứa ẩn dưới dấu căn + Dạng 4. Một số phương trình dùng ẩn phụ để đưa về phương trình bậc hai Vấn đề 5. Phương trình và hệ phương trình bậc nhất nhiều ẩn + Dạng 1. Giải và biện luận hệ phương trình bậc nhất hai ẩn + Dạng 2. Giải và biện luận hệ phương trình bậc nhất hai ẩn + Dạng 3. Giải hệ phương trình bậc nhất hai ẩn, ba ẩn Vấn đề 6. Hệ phương trình bậc hai hai ẩn + Dạng 1. Hệ gồm 1 phương trình bậc nhất và 1 phương trình bậc hai + Dạng 2. Hệ đối xứng loại 1 + Dạng 3. Hệ đối xứng loại 2 + Dạng 4. Hệ phương đẳng cấp
Tìm tòi sáng tạo một số cách giải phương trình vô tỷ - Nguyễn Minh Tuấn
Phương trình vô tỷ là một trong những vấn đề quan trọng của đại số sơ cấp, hiện nay đã có rất nhiều tài liệu nói về vấn đề này, nhưng tuy nhiên trong bài viết này tôi sẽ giới thiệu tới bạn đọc một vài kỹ thuật rất hay bao gồm kỹ thuật giải những bài toán không cần CASIO và những bài toán kết hợp với một vài kỹ thuật CASIO nhỏ để giải quyết những bài toán hay và khó.Trong bài viết này sẽ gồm 5 chủ đề: [ads] + Một số kỹ thuật nhỏ trong phương trình vô tỷ + Kỹ thuật nhân liên hợp, phân tích nhân tử một số phương trình vô tỷ cơ bản và tầm trung + Kỹ thuật chứng minh vô nghiệm + Kỹ thuật sử dụng tính đơn điệu của hàm số + Kỹ thuật sử dụng bất đẳng thức Bài viết là những kinh nghiệm, thủ thuật mà tôi tích lũy được trong quá trình học tập. Một số kỹ thuật trong bài viết được tôi sưu tầm và phát triển lên. Phương Trình - Hệ Phương Trình - Bất Phương Trình Ghi chú : Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]
Tuyển tập những bài phương trình, hệ phương trình hay - Nguyễn Đức Thắng
Những bài phương trình, hệ phương trình đẹp và hay là niềm đam mê một thời của nhiều học sinh cấp 2 và cấp 3. File này mình tuyển chọn và trình bày lại những bài phương trình, hệ phương trình mà mình câm thấy hay! Mình lấy các đề toán và lời giải từ nhiều nguồn: Về đề bài: + Các bài toán trong Nhóm Toán, Nhóm LIKE, Nhóm Giao lưu Toán (Diễn đàn Toán học BoxMath), Nhóm Học tập + Các bài toán trong các file sách của BoxMath, K2pi, VMF, Mathscope [ads] + Các bài toán trong sách Tư duy sáng tạo tìm tòi lời giải PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH ĐẠI SỐ VÔ TỈ – tác giả Lê Văn Đoàn + Những điều cần biết Luyện thị Quốc gia Kỹ thuật giải nhanh HỆ PHƯƠNG TRÌNH – tác giả Đặng Thành Nam + Các bài toán trong đề thi thử THPTQG Về lời giải: + Các lời giải của thầy Nguyễn Tiến Trung, thầy Trần Quốc Thịnh, Dương Văn Vũ, Phùng Quyết Thắng, Phong Hồng, Bùi Hùng Vương, Sơn Huỳnh Phú, Châu Thanh Hải + Các lời giải của bạn Nguyễn Văn Lợi, Hùng Nolan, Ngô Văn Tiệp, Nguyễn Nam, Trần Lương, Peter Thái Học + Một vài bài là lời giải của mình Chúc các bạn học tốt!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6