Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đăng nhập để đọc

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quy tắc dấu ngoặc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quy tắc dấu ngoặc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Lý thuyết. QUY TẮC DẤU NGOẶC: – Khi bỏ dấu ngoặc có dấu “+” đằng trước, ta giữ nguyên dấu của các số hạng trong ngoặc. – Khi bỏ dấu ngoặc có dấu “-” đằng trước ta phải đổi dấu tất cả các số hạng trong ngoặc: dấu “+” đổi thành “-” và dấu “-” đổi thành “-”. LƯU Ý: Một dãy các phép tính cộng, trừ các số nguyên cũng được gọi là một tổng. Áp dụng các tính chất giao hoán, kết hợp và quy tắc dấu ngoặc, trong một biểu thức, ta có thể: + Thay đổi tuỳ ý vị trí của các số hạng kèm theo dấu của chúng. + Đặt dấu ngoặc để nhóm các số hạng một cách tuỳ ý. Nếu trước dấu ngoặc là dấu “-” thì phải đổi dấu tất cả các số hạng trong ngoặc. 2. Các dạng toán thường gặp. a) Dạng 1: Thực hiện phép tính. Phương pháp: Bỏ dấu ngoặc theo quy tắc rồi tính. b) Dạng 2: Tìm x. Phương pháp: Rút gọn, xác định vai trò của x trong phép toán. B. BÀI TẬP
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng và trừ hai số nguyên. * Quy tắc cộng hai số nguyên được xác định như sau: + Cộng hai số nguyên dương chính là cộng hai số tự nhiên khác 0. + Muốn cộng hai số nguyên âm: Bước 1: Bỏ dấu “-” trước mỗi số. Bước 2: Tính tổng của hai số nhận được ở Bước 01. Bước 3: Thêm dấu “-” trước tổng nhận được ở Bước 2, ta có tổng cần tìm. + Hai số nguyên đối nhau có tổng bằng 0. + Muốn cộng hai số nguyên khác dấu: Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại. Bước 2: Trong hai số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn. Bước 3: Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm. * Quy tắc trừ hai số nguyên được xác định như sau: Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b. 2. Tính chất. Phép cộng số nguyên có các tính chất sau: • Giao hoán: a + b = b + a. • Kết hợp: (a + b) + c = a + (b + c). • Cộng với số 0: a + 0 = 0 + a = a. • Cộng với số đối: a + (- a) = (- a) + a = 0. 3. Các dạng toán thường gặp. 1. Dạng 1: Cộng trừ hai số nguyên. 2. Dạng 2: Tìm số chưa biết. 3. Dạng 3: Toán có lời văn. B. BÀI TẬP Dạng 1: Cộng trừ hai số nguyên. Phương pháp giải: + Sử dụng quy tắc cộng, trừ hai số nguyên. + Tính chất phép cộng số nguyên. + Thứ tự thực hiện phép tính. + Quan sát, tính nhanh nếu có thể. Thường hay sử dụng tính chất giao hoán, kết hợp, cộng với số đối, cũng có khi cộng các số dương với nhau, cộng các số âm với nhau. Dạng 2: Tìm số chưa biết. + Xét xem: Điều cần tìm đóng vai trò là gì trong phép toán (số hạng, số trừ, số bị trừ). (Số hạng) = (Tổng) – (Số hạng đã biết). (Số trừ) = (Số bị trừ) – (Hiệu). (Số bị trừ) = (Hiệu) + (Số trừ). + Chú ý thứ thứ tự trong tập hợp số nguyên và cách tính tổng cách đều. Dạng 3: Toán có nội dung thực tế. Căn cứ vào nội dung bài toán để đưa về phép cộng, trừ các số nguyên cùng dấu hoặc khác dấu.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên âm, số nguyên dương, tập hợp các số nguyên. – Các số tự nhiên (khác 0): 1, 2, 3, 4, 5 … được gọi là các số nguyên dương. – Các số -1, -2, -3 …. gọi là các số nguyên âm. – Tập hợp các số nguyên gồm các số nguyên âm, số 0 và các số nguyên dương. Kí hiệu là tập Z. Chú ý: – Số 0 không là số nguyên âm cũng không là số nguyên dương. – Đôi khi ta còn viết dấu “+” ngay trước số nguyên dương. Ví dụ số 6 còn được viết +6 (đọc là dương sáu). 2. Thứ tự trong tập số nguyên. a. Trục số. – Ta biểu diễn các số 1, 2, 3 …. và các số nguyên âm -1, -2, -3 … khi đó ta được một trục số gốc O (Hình 1). – Chiều từ trái sang phải là chiều dương, chiều ngược lại là chiều âm. – Điểm biểu diễn số nguyên a gọi là điểm a. – Cho hai số nguyên a, b. Trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b, hay a b. Chú ý : Có thể có hình vẽ như Hình 2. b. Thứ tự các số nguyên. – Mọi số nguyên âm đều nhỏ hơn 0, do đó đều nhỏ hơn mọi số nguyên dương. – Nếu a và b là hai số nguyên dương và a b thì a b. Chú ý: Kí hiệu a b có nghĩa là “a b hoặc a b”. B. BÀI TẬP TRẮC NGHIỆM I. MỨC ĐỘ NHẬN BIẾT. II. MỨC ĐỘ THÔNG HIỂU. III. MỨC ĐỘ VẬN DỤNG. IV. MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6