Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 - 2020 sở GDĐT Đồng Nai

Ngày … tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Đồng Nai gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Đồng Nai : + Cho hàm số y = 1 + (m^2 – 4)x + (4m – 1)x^2 – x^3, với m là tham số. a) Hỏi có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên R. b) Tìm các số thực m để hàm số đã cho đạt cực đại tại x = 1. c) Tìm các số thực m để giá trị nhỏ nhất của hàm số đã cho trên [-2;-1] bằng 9. + Một trang trại xây một bể nước hình hộp chữ nhật không nắp có thể tích bằng 18,432 m3 (tính cả thành và đáy bể), biết đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí xây bể được tính theo tổng diện tích của thành (mặt bên ngoài) và đáy bể với giá 800 nghìn đồng / m2. Tìm các kích thước của bể để chi phí xây bể là nhỏ nhất và tính gần đúng chi phí đó. [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc mặt phẳng đáy, SA = a. Biết M, N là hai điểm thay đổi lần lượt thuộc hai cạnh AB và AD sao cho AM + AN = a. 1) Chứng minh thể tích S.AMCN có giá trị không đổi. 2) Tính theo a khoảng cách từ C đến (SMN). Chứng minh mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định. + Một tổ gồm 8 học sinh là An, Bình, Châu, Dũng, Em, Fin, Giang, Hạnh sẽ cùng đi trên một chuyến bay để dự đợt học tập, tham quan và trải nghiệm; đại lý dành cho tổ 8 vé máy bay có số ghế là 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H. Mỗi học sinh chọn ngẫu nhiên một vé. Tính xác suất để có đúng 4 học sinh trong tổ mà mỗi bạn chọn được một vé có chữ của số ghế trùng với chữ đầu của tên mình.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình Bản PDF Ngày 08 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình : + Cho tứ diện ABCD và hai điểm M, N lần lượt thuộc các cạnh AB, AC sao cho 2AM = BM, 2CN = AN. Mặt phẳng (P) đi qua hai điểm M, N và song song với cạnh AD, cắt các cạnh BD và CD lần lượt tại K và L. a. Gọi V là thể tích của khối tứ diện ABCD. Tính thể tích khối đa diện BCMNLK theo V. b. Giả sử tứ diện ABCD có BC = x (0 < x < √3), tất cả các cạnh còn lại đều bằng 1. Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi A, B là các giao điểm của (C) với các trục tọa độ. Tìm trên (C) các điểm M có tọa độ nguyên sao cho tam giác MAB có diện tích bằng 8 (đvdt). + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn (O), chọn ngẫu nhiên 3 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tam giác tù. File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre Bản PDF Thứ Tư ngày 24 tháng 02 năm 2021, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho hàm số y = (x + 1)/(3 – x) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Tìm các số thực m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt M, N tạo thành tam giác MNI có trọng tâm nằm trên (C). + Gọi M là tập hợp các số tự nhiên gồm 5 chữ số khác nhau đôi một được lập từ tập X = {0; 1; 2; 3; 4; 5}. Lấy ngẫu nhiên 2 phần tử của M. Tính xác suất để có ít nhất một trong hai phần tử đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S. AMPN. Tìm giá trị nhỏ nhất của V1/V.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Khánh Hòa
Nội dung Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Khánh Hòa Bản PDF Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2020.
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế Bản PDF Thứ Ba ngày 19 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề). Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chẵn. + Cho phương trình: (2m + 3).16^x – (4m – 2).4^x + 3m – 8 = 0 (1) với m là tham số thực. a) Giải phương trình khi m = 3. b) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm trái dấu. + Cho hình chóp S.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Gọi H là hình chiếu của S lên mặt phẳng đáy ABCD. a) Chứng minh rằng SA vuông góc với SC. b) Tính diện tích đáy ABCD theo x của hình chóp S.ABCD. c) Xác định x để khối chóp S.ABCD có thể tích lớn nhất. Tính giá trị thể tích lớn nhất đó.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6