Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 12 môn Toán lần 2 năm 2023 2024 trường THPT chuyên Thái Bình

Nội dung Đề khảo sát lớp 12 môn Toán lần 2 năm 2023 2024 trường THPT chuyên Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2023 – 2024 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 126 – 234 – 315 – 468. Trích dẫn Đề khảo sát Toán lớp 12 lần 2 năm 2023 – 2024 trường THPT chuyên Thái Bình : + Một người muốn làm một cái thùng tôn dạng khối hộp chữ nhật không nắp có thể tích bằng 3 288 dm. Đáy thùng là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá tôn làm thùng là 500000 đồng/2 m. Nếu người đó biết xác định các kích thước của thùng hợp lí thì chi phí cho việc mua tôn thấp nhất. Hỏi người đó trả chi phí thấp nhất để mua tôn làm thùng đó là bao nhiêu? (giả sử các mép tôn hàn không đáng kể). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2, SA = 2 và SA vuông góc với mặt phẳng đáy (ABCD). Gọi M, N là hai điểm thay đổi trên hai cạnh AB, AD sao cho mặt phẳng (SMC) vuông góc với mặt phẳng (SNC). Tính tổng 2 2 1 1 T AN AM khi thể tích khối chóp S.AMCN đạt giá trị lớn nhất. + Một tấm đề can hình chữ nhật được cuộn tròn lại theo chiều dài tạo thành một khối trụ có đường kính 50 (cm). Người ta trải ra 250 vòng để cắt chữ và in tranh cổ động, phần còn lại là một khối trụ có đường kính 45 (cm). Hỏi phần đã trải ra dài bao nhiêu mét (làm tròn đến hàng đơn vị)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG Toán 12 dự thi Quốc gia năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi thành lập đội tuyển HSG Toán 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số câu trong đề thi : + Trong một buổi tiệc có 10 chàng trai, mỗi chàng trai dẫn theo một cô gái. a) Có bao nhiêu cách xếp họ ngồi thành một hàng ngang sao cho các cô gái ngồi cạnh nhau, các chàng trai ngồi cạnh nhau và có một chàng trai ngồi cạnh cô gái mà anh ta dẫn theo? b) Ký hiệu các cô gái là G1, G2, … G10. Xếp hết 20 người ngồi thành một hàng ngang sao cho các điều kiện sau được đồng thời thỏa mãn: 1. Thứ tự ngồi của các cô gái, xét từ trái sang phải là G1, G2, … G10. 2. Giữa G1 và G2 có ít nhất 2 chàng trai. 3. Giữa G8 và G9 có ít nhất 1 chàng trai và nhiều nhất 3 chàng trai. Hỏi có tất cả bao nhiêu cách xếp như vậy + Cho tam giác ABC với I là tâm đường tròn nội tiếp và M là một điểm nằm trong tam giác. Gọi A1, B1, C1 là các điểm đối xứng với điểm M lần lượt qua các đường thẳng A1, B1, C1. Chứng minh rằng các đường thẳng A1, B1, C1 đồng quy.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6