Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Thủ thuật tính đạo hàm của một số hàm cơ bản bằng Casio - Nguyễn Minh Tuấn

Tài liệu giới thiệu một số thủ thuật tính nhanh đạo hàm các hàm số cơ bản bằng cách sử dụng máy tính cầm tay Casio. Các hàm được giới thiệu gồm: A. Tính đạo hàm của một đa thức B. Tính đạo hàm của một phân thức C. Tính đạo hàm của hàm 1 căn D. Tính đạo hàm của hàm 2 căn [ads]

Nguồn: toanmath.com

Đăng nhập để đọc

50 bài toán thực tế liên quan đạo hàm - tích phân có lời giải
Tài liệu gồm 54 trang, tuyển chọn 50 bài toán thực tế liên quan đạo hàm – tích phân thường gặp trong đề thi thử THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu 50 bài toán thực tế liên quan đạo hàm – tích phân có lời giải: + Một con kiến đậu ở đầu B của một thanh cứng mảnh AB có chiều dài L đang dựng cạnh một bức tường thẳng đứng (hình vẽ). Vào thời điểm mà đầu B bắt đầu chuyển động sang phải theo sàn ngang với vận tốc không đổi v thì con kiến bắt đầu bò dọc theo thanh với vận tốc không đổi u đối với thanh. Trong quá trình bò trên thanh, con kiến đạt được độ cao cực đại max h là bao nhiêu đối với sàn? Cho đầu A của thanh luôn tỳ lên tường thẳng đứng. + Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. + Một điểm C trên hòn đảo có khoảng cách ngắn nhất đến bờ biển là 60 km, B là điểm trên bờ biển sao cho CB vuông góc với bờ biển. Khoảng cách từ A trên bờ biển đến B là 100 km. Để tham dự buổi họp nhóm Strong Team Toán VD – VCD ngày 28/6/2019, thầy Quý phải tính toán vị trí diễn ra cuộc họp tại địa điểm G trên đoạn AB để tổng chi phí đi lại của cả hai nhóm các thầy cô là ít nhất. Biết nhóm của thầy Quý đi từ C theo đường biển chi phí đi là 500 nghìn mỗi km, nhóm cô Thêm đi từ vị trí A đi trên đất liền mỗi km chi phí là 300 nghìn. Hỏi thầy tìm được vị trí điểm G cách B bao xa?
Các dạng toán liên quan đến phương trình tiếp tuyến - Diệp Tuân
Tài liệu gồm 56 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải một số dạng toán liên quan đến phương trình tiếp tuyến trong chương trình Đại số và Giải tích 11 chương 5: Đạo hàm. Khái quát nội dung tài liệu các dạng toán liên quan đến phương trình tiếp tuyến – Diệp Tuân: A. LÝ THUYẾT I. Hai đồ thị tiếp xúc + Định nghĩa: Hai đồ thị của hai hàm số y = f(x) và y = g(x) gọi là tiếp xúc nhau tại điểm M nếu tại M chúng có cùng tiếp tuyến. + Định lí 1: Hai đồ thị của hai hàm số y = f(x) và y = g(x) tiếp xúc nhau khi và chỉ khi hệ phương trình: f(x) = g(x) và f'(x) = g'(x) có nghiệm và nghiệm của hệ là tọa độ tiếp điểm. II. Tiếp tuyến của đồ thị hàm số + Định nghĩa: Cho hàm số y = f(x). Một cát tuyến MM0 được giới hạn bởi đường thẳng M0T khi M dần tới M0 thì M0T gọi là tiếp tuyến của đồ thị, M0 gọi là tiếp điểm. + Định lí 2: Đạo hàm của f(x) tại x = x0 là hệ số góc của tiếp tuyến tại M(x0;f(x0)). [ads] B. PHÂN DẠNG VÀ BÀI TẬP MINH HỌA Dạng 1. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(x0;f(x0)). Dạng 2: Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) biết tiếp tuyến có hệ số góc k. Dạng 3. Phương trình tiếp tuyến Δ của đồ thị hàm số y = f(x) biết Δ đi qua điểm A(xA;yA). Dạng 4. Viết PTTT Δ của (C): y = f(x) biết Δ cắt hai trục tọa độ tại A và B sao cho tam giác OAB vuông cân hoặc có diện tích tam giác OAB cho trước. Dạng 5. Tìm những điểm trên đường thẳng d: ax + by + c = 0 mà từ đó vẽ được 1 / 2 / 3 / … / n tiếp tuyến với đồ thị hàm số (C): y = f(x).
Bài toán viết phương trình tiếp tuyến - Nguyễn Hữu Học
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Nguyễn Hữu Học, tuyển chọn 50 bài toán viết phương trình tiếp tuyến, một dạng toán quan trọng trong chương trình Đại số và Giải tích 11 chương 5: Đạo hàm. Khái quát nội dung tài liệu bài toán viết phương trình tiếp tuyến – Nguyễn Hữu Học: Vấn đề 1 . Phương trình tiếp tuyến của đồ thị hàm số tại một điểm. Cho hàm số y = f(x) có đồ thị (C) và M(x0;y0) là điểm trên (C). Tiếp tuyến với đồ thị (C) tại M(x0;y0) có phương trình: y − y0 = f'(x0)(x − x0). Vấn đề 2 . Phương trình tiếp tuyến của đồ thị hàm số biết hệ số góc. Giải phương trình f'(x) = k tìm các nghiệm x1, x2, …. Viết phương trình tiếp tuyến: y = f'(xi)(x − xi) + f(xi) (i = 1,2,…,n). [ads] Vấn đề 3 . Phương trình tiếp tuyến của đồ thị hàm số đi qua một điểm. Phương trình tiếp tuyến của đồ thị (C): y = f (x) đi qua điểm M(x1;y1). Cách 1 : Phương trình đường thẳng (d) đi qua điểm M có hệ số góc là k có dạng: y = k(x − x1) + y1. (d) tiếp xúc với đồ thị (C) tại N(x0;y0); khi hệ: f(x0) = k(x0 − x1) + y1 và f'(x0) = k có nghiệm x0. Cách 2 : Gọi N(x0;y0) là tọa độ tiếp điểm của đồ thị (C) và tiếp tuyến (d) qua điểm M, nên (d) cũng có dạng y = y’0(x − x0) + y0. (d) đi qua điểm M nên có phương trình: y1 = y’0(x1 − x0) + y0. Từ phương trình trên ta tìm được tọa độ điểm N(x0;y0); từ đây ta tìm được phương trình đường thẳng (d).
Chuyên đề đạo hàm - Lư Sĩ Pháp
Tài liệu gồm có 72 trang được biên soạn bởi thầy Lư Sĩ Pháp, bao gồm tóm tắt lý thuyết cần nắm ở mỗi bài học, bài tập có hướng dẫn giải và bài tập tự luyện, phần bài tập trắc nghiệm đủ dạng có đáp án chuyên đề đạo hàm, giúp học sinh tự học chương trình Đại số và Giải tích 11 chương 5. Các dạng toán được đề cập trong tài liệu chuyên đề đạo hàm – Lư Sĩ Pháp: CHỦ ĐỀ 1 . ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM. + Dạng 1. Tính đạo hàm bằng định nghĩa. + Dạng 2. Quan hệ giữa tính liên tục và sự có đạo hàm. + Dạng 3. Tiếp tuyến với đồ thị (C) của hàm số y = f(x) tại điểm M0(x0;f(x0)) (tiếp điểm). + Dạng 4. Tiếp tuyến với đồ thị (C) của hàm số y = f(x) khi biết hệ số góc k. CHỦ ĐỀ 2 . CÁC QUY TẮC TÍNH ĐẠO HÀM. + Dạng 1. Tính đạo hàm bằng các công thức đối với hàm đa thức, hàm hữu tỉ, hàm căn bậc hai. + Dạng 2. Vận dụng đạo hàm vào giải phương trình hay bất phương trình. + Dạng 3. Tiếp tuyến với đồ thị (C) của hàm số y = f(x) kẻ từ điểm A(a;b) với A thuộc (C) hoặc A không thuộc (C). [ads] CHỦ ĐỀ 3 . ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC. + Dạng 1. Tính đạo hàm bằng công thức đối với các hàm lượng giác. + Dạng 2. Giải phương trình f'(x) = 0. CHỦ ĐỀ 4 . VI PHÂN + Dạng 1. Tìm vi phân của hàm số y = f(x). + Dạng 2. Tính giá trị gần đúng của một biểu thức. CHỦ ĐỀ 5 . ĐẠO HÀM CẤP HAI. + Dạng 1. Tìm đạo hàm cấp cao của hàm số y = f(x). + Dạng 2. Chứng minh một hệ thức có đạo hàm. + Dạng 3. Tính gia tốc tức thời của một chuyển động có phương trình s = s(t).

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6