Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng (ABCD). Biết AB a BC a 3 và SD a 5. Đường thẳng qua A vuông góc với AC cắt các đường thẳng CB CD lần lượt tại I J. Gọi H là hình chiếu vuông góc của A trên SC. Gọi K L là giao điểm của SB SD với (HIJ) a. Chứng minh rằng AK SBC. b. Tính khoảng cách từ điểm B đến (HIJ). + Trên một đường thẳng có n điểm màu xanh và n điểm màu đỏ. Chứng minh rằng tổng tất cả các khoảng cách giữa các cặp điểm cùng màu bé hơn hoặc bằng tổng tất cả các khoảng cách giữa các cặp điểm khác màu. + Cho dãy số (un) xác định bởi 1 n u và 2 1 1 n n n u u với n = 1, 2, 3 … Tính giới hạn lim n n u +∞.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi Toán 11 THPT năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi (HSG) môn Toán 11 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 211, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 11 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD vuông tại B và C có AB CD và CD BC. Đường tròn đường kính AB có phương trình 2 2 x y x 4 5 0 cắt cạnh AD của hình thang tại điểm thứ hai N. Gọi M là hình chiếu vuông góc của D trên đường thẳng AB. Biết điểm N có tung độ dương và đường thẳng MN có phương trình 3 3 0 x y đỉnh C a b. Giá trị của a b 2 bằng? + Một bao hạt giống gồm đậu xanh và đậu đỏ trong đó có 3 5 là hạt giống đậu xanh, 2 5 là hạt giống đậu đỏ. Do bao hạt giống này bị lỗi nên chỉ có 2 3 hạt giống đậu xanh nảy mầm và 3 4 hạt giống đậu đỏ nảy mầm. Lấy ngẫu nhiên trong bao 1 hạt giống và gieo thì thấy nó nảy mầm thành 1 cây đậu. Xác suất để cây đậu đó là cây đậu xanh bằng? + Giả sử CD h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A B trên mặt đất sao cho ba điểm A B C thẳng hàng. Ta đo được AB 24 m CAD CBD 63 48 (tham khảo hình vẽ). Chiều cao h của khối tháp gần nhất với giá trị nào sau đây?
Đề học sinh giỏi Toán 11 năm 2022 - 2023 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 THPT năm học 2022 – 2023 trường THPT Thị xã Quảng Trị; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Cho hình chóp S ABCD có đáy ABCD là hình thang cân với AD BC AB BC a AD a. Tam giác SAD vuông cân tại S và SB a 3. a) Gọi M là trung điểm của SA, chứng minh rằng BM SCD. b) Tính cosin của góc giữa hai đường thẳng BM và CD. c) Gọi G là trọng tâm của tam giác SCD, H là giao điểm của đường thẳng BG và mặt phẳng SAC. Tính tỉ số HB HG. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD. Trên tia đối của tia CD lấy điểm E sao cho CD CE điểm N là hình chiếu vuông góc của D lên đường thẳng BE. a) Chứng minh AN CN b) Tìm tọa độ điểm D biết A 3 1 N 6 2 và điểm C thuộc đường thẳng 2 5 0 x y. + Cho bảng hình vuông (6×6) gồm 36 hình vuông đơn vị, mỗi hình có diện tích bằng 1. Hỏi có bao nhiêu hình chữ nhật tạo thành từ các hình vuông đơn vị của bảng. Chọn ngẫu nhiên một hình chữ nhật trên, tính xác suất để hình chữ nhật chọn được có diện tích là số chẵn?
Đề học sinh giỏi Toán 11 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 11 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Có n (n ≥ 2) đội bóng tham gia một giải đấu bóng đá theo thể thức đá vòng tròn một lượt. Mỗi trận có kết quả là hòa hoặc phân thắng thua. Nếu kết quả hoà thì mỗi đội đều được 1 điểm. Nếu kết quả phân thắng thua thì đội thắng được 3 điểm, đội thua được 0 điểm. Gọi h là hiệu số điểm của đội đứng đầu bảng và đội đứng cuối bảng. Nếu chỉ xét các tình huống sau khi giải đấu kết thúc không có hai đội nào bằng điểm nhau thì giá trị nhỏ nhất có thể của h là bao nhiêu trong các trường hợp: a. Số đội tham dự là n = 3. b. Số đội tham dự là n = 42. + Cho P x là đa thức bậc 2023 với các hệ số thực không âm. Giả sử abc là độ dài ba cạnh của một tam giác nhọn. Chứng minh rằng các số 2023 2023 2023 Pa Pb Pc cũng là độ dài ba cạnh của một tam giác nhọn. + Cho đường tròn (O) và dây cung BC cố định trên (O). Một điểm A thay đổi trên (O) sao cho tam giác ABC nhọn và AB BC. Các đường cao AD BE CF của tam giác ABC cắt nhau tại H. Gọi M N lần lượt là trung điểm của AC và BC. Gọi Q là điểm đối xứng với B qua O. Đường thẳng QM cắt BC tại P và cắt (O) tại R. Đường tròn ngoại tiếp tam giác BRP cắt BQ tại S. a. Chứng minh CH là trục đẳng phương của các đường tròn đường kính BM và AN. b. Chứng minh các điểm SFR thẳng hàng và đường thẳng MF đi qua một điểm cố định khi A thay đổi.
Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic truyền thống 30 tháng 4 môn Toán 11 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023. Trích dẫn Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Cho p là số nguyên tố có dạng 20n + 7. Gọi S là tập hợp tất cả các số nguyên dương có thể biểu diễn dưới dạng a2 + 5b2 với a và b là hai số nguyên tố cùng nhau. a. Chứng minh rằng tồn tại số nguyên dương k sao cho kp thuộc S. b. Tìm số nguyên dương k0 nhỏ nhất sao cho k0p thuộc S. + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O;R). Các đường phân giác trong BX, CY của tam giác ABC cắt nhau tại I. J là trung điểm cung nhỏ BC của(O;R). Đường thẳng XY cắt các đường thẳng AI, BC lần lượt tại L, T. a. Chứng minh. b. Chứng minh đường thẳng qua I vuông góc với XY cắt đường thẳng OJ tại điểm O’ đối xứng với điểm O qua điểm J. c. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi G là điểm đối xứng của D qua đường thẳng EF. Biết các đường thẳng DL, AG cắt nhau tại W, chứng minh WI vuông góc với XY. + Cho a < b < c là ba nghiệm thực của phương trình 8×3 – 4×2 – 4x + 1 = 0. a. Lập phương trình bậc ba có 3 nghiệm là 1 – 2a2, 1 – 2b2, 1 – 2c2. b. Chứng minh rằng: 2a2 + b = 2b2 + c = 2c2 + a = 1.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6