Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh THPT chuyên 2018 2019 sở GD và ĐT Nam Định (đề chung)

Nội dung Đề Toán tuyển sinh THPT chuyên 2018 2019 sở GD và ĐT Nam Định (đề chung) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT chuyên 2018 2019 sở GD và ĐT Nam Định (đề chung) Đề Toán tuyển sinh THPT chuyên 2018 2019 sở GD và ĐT Nam Định (đề chung) Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) là bài thi được thiết kế theo hình thức tự luận, bao gồm 5 bài toán. Thời gian làm bài là 120 phút, nhằm tiêu chí tuyển chọn học sinh lớp 9 có năng khiếu môn Toán để học tại các trường THPT chuyên tại tỉnh Nam Định. Đề thi đi kèm lời giải chi tiết, giúp học sinh có cái nhìn rõ ràng và chi tiết về cách giải các bài toán.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi thầy giáo Nguyễn Hải Dương – giáo viên Toán trường THCS Phan Chu Trinh, thành phố Buôn Ma Thuột, tỉnh Đắk Lắk). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Bạn An đến cửa hàng sách mua 1 cuốn sách tham khảo Toán và 1 cuốn sách thamkhảo Ngữ Văn để ôn thi tuyển sinh vào lớp 10 trung học phổ thông năm học 2022-2023. Khi đến mua hàng thì giá tiền cùa cuốn sách Toán cần mua giảm 20% và cuốn sách Ngữ Văn cần mua tăng 15% so với giá niêm yết của cửa hàng. Vi vậy, bạn An thanh toán tổng cộng là 233000 đồng khi mua hai cuốn sách trên. Biểt rằng theo giá niêm yết, tổng giá tiền của 2 cuốn sách Ngữ Văn nhiều hơn tổng giá tiền cùa 3 cuốn sách Toán là 10000 đồng (hai cuồn sách Ngữ Văn giống nhau; ba cuốn sách Toán giống nhau). Hỏi giá niêm yết của cuốn sách tham khảo Toán và cuốn sách tham khảo Ngữ Văn trên là hao nhiêu? + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O;R). Hai đường cao BM, CN của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác AMHN nội tiếp. 2) Đường thẳng AH cắt BC tại D và cắt đường tròn (O;R) tại điểm thứ hai tại P. Chứng minh BC là tia phân giác của MBP. 3) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMHN. Chứng minh IM là tiếp tuyến của đường tròn ngoại tiếp tam giác BCM. 4) Gọi F là giao điềm của IM và AB. Chứng minh 2 FM FN FB. + Cho parabol 2 y x có đồ thị P và đường thẳng d y x m 2 2 với m là tham số. Tìm giá trị của tham số m để đường thẳng d cắt P tại hai điểm phân biệt.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh (đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Bắc Ninh : + Cho đường tròn (C) có đường kính AB. Lấy điểm C thuộc đoạn AO (C khác A O). Vẽ đường tròn (I) đường kính BC. Vẽ tiếp tuyến AD và cát tuyến AEF với đường tròn (I) (E nằm giữa A F) sao cho tia AO nằm giữa 2 tia AD AE. Đường thẳng vuông góc với AB từ C cắt đường tròn (O) tại hai điểm gọi một điểm là N sao cho N, D thuộc hai nửa mặt phẳng đối nhau bờ AB. Gọi S là giao điểm của hai đường thẳng DI và NB. R là giao DN và AS. Gọi J là trung điểm SD. a) Chứng minh tam giác AND cân. b) L T lần lượt là tìm đường tròn ngoại tiếp các tam giác SBC và SEF. Chứng minh ba điểm J L T thẳng hàng. + Cho hình vuông ABCD có diện tích là S. Tứ giác MNPQ có bốn đỉnh M N P Q thuộc AB BC CD DA và 4 đỉnh này không trùng 4 đỉnh hình vuông. Chứng minh S AC MN NP PQ QM 4. + Có 10 bạn học sinh tham gia thi đấu bóng bàn. Hai bạn bất kì đều phải đấu với nhau một trận, bạn nào cũng gặp 9 đối thủ của mình và không có trận nào hòa. Chứng minh rằng luôn xếp được 10 bạn thành 1 hàng dọc sao cho bạn đứng trước thắng bạn đứng kề sau.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho phương trình x2 – (2m – 1)x + m2 – m – 2 = 0 với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 thỏa mãn x13 + x23 – 5x1x2 = 10m + 15. + Cho hình chữ nhật ABCD có chiều dài bằng 47cm, chiều rộng bằng 43cm. Chứng minh rằng trong số 2022 điểm bất kì nằm trong hình chữ nhật ABCD luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 2 cm. + Cho đường tròn (O; R) và hai điểm P, Q nằm ngoài (O) sao cho góc POQ vuông, PQ không cắt (O). Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A, B là hai tiếp điểm; tia PA nằm giữa hai tia PQ và PO). Hai cát tuyến PDC, QEC thay đổi của (O) cùng đi qua C (D nằm giữa P và C; E nằm giữa Q và C). Tia PE cắt đường tròn tại điểm thứ hai F (F khác E). H là giao điểm của AB và OP. Chứng minh rằng: 1) Tích PE.PF không đổi. 2) AHE = AHF. 3) Đường tròn ngoại tiếp tam giác PDF luôn đi qua một điểm cố định.
Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E (hình vẽ bên). Tính diện tích phần tô đậm trong hình vẽ bên. + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Gọi I là trung điểm của đoạn PQ, J là giao điểm của hai đường thẳng AQ và MN. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. + Cho x, y, z là các số thực dương thay đổi. Tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6