Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Sơn La

giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn HSG Toán 12 THPT năm 2021 - 2022 sở GDĐT Vĩnh Phúc
Thứ Bảy ngày 25 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 THPT năm học 2021 – 2022. Đề thi chọn HSG Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn HSG Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc : + Cho hình chóp S.ABCD có SA vuông góc với mặt đáy, ABCD là tứ giác nội tiếp đường tròn đường kính AC. Gọi hai điểm M, N tương ứng là hình chiếu vuông góc của điểm A lên hai đường thẳng SB và SD. Biết SA = a, BD = a3 và BAD = 60°. Tính cosin của góc giữa hai mặt phẳng (AMN) và (ABCD). + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, cạnh AC = a và ABC = 30°. Tứ giác BCC’B’ là hình thoi có B’BC nhọn, mặt phẳng (BCC’B’) vuông góc với mặt phẳng (ABC), góc giữa mặt phẳng (ABB’A’) và mặt phẳng (ABC) bằng 60°. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng BC, B’C’, A’B và A’C. Tính theo a thể tích của khối tứ diện MNPQ. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có góc BAC tù. Đường tròn (C) ngoại tiếp tam giác ABC có phương trình (C): (x + 2)2 + (y – 2)2 = 25. Đường thẳng đi qua A và vuông góc với BC cắt đường tròn (C) tại điểm K(1;-2) (K không trùng với A). Trọng tâm của tam giác ABC là G. Tính diện tích tam giác ABC.
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 - 2022 sở GDĐT Hà Nội
Sáng thứ Năm ngày 23 tháng 12 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Hà Nội : + Chứng minh rằng với mọi m khác 2 hàm số y có đúng 4 điểm cực trị. + Chọn ngẫu nhiên một số từ tập các số tự nhiên có 8 chữ số. Tính xác suất để chọn được số chia hết cho 9 và chứa nhiều nhất một chữ số 9. + Trong mặt phẳng (P), cho xOy = 90° và tia Oz thỏa mãn xOz = 30°; zOy = 60°. Trên tia Oz lấy điểm I sao cho OI = 2a. Trên đường thẳng d đi qua O và vuông góc với (P), lấy điểm S sao cho OS = a. Mặt phẳng (Q) thay đổi đi qua SI và cắt các tia Ox, Oy lần lượt tại A, B (A khác O và B khác O). 1) Tính góc giữa (P) và (Q) khi I là trung điểm AB. 2) Tìm giá trị nhỏ nhất của thể tích khối chóp S.OAB.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Nghệ An
Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2021 – 2022. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Tìm số điểm cực trị của hàm số g(x). + Trong quá trình truy vết lịch sử tiếp xúc của bệnh nhân Covid-19 ở một trường học, trung tâm y tế xác định được 3 giáo viên và một số học sinh có sự liên quan đến bệnh nhân đó. Người ta chọn ngẫu nhiên 10 người trong số các giáo viên và học sinh liên quan để làm xét nghiệm gộp. Biết rằng xác suất để trong 10 người được chọn có 3 giáo viên bằng 6 lần xác suất trong 10 người được chọn đều là học sinh. Tính xác suất để trong 10 người được chọn làm xét nghiệm có nhiều nhất 2 giáo viên. + Cho a, b, c là các số thực không âm thay đổi thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức P = 2a3 + b3 + c3.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bình Định
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào thứ Tư ngày 24 tháng 11 năm 2021.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6