Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khối đa diện, nón - trụ - cầu trong các đề thi thử THPTQG môn Toán

Tài liệu gồm 514 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm các chuyên đề: khối đa diện và thể tích khối đa diện, mặt nón – mặt trụ – mặt cầu có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng), Hình học 12 chương 2 (mặt nón – mặt trụ – mặt cầu) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 4 phần dựa theo độ khó của các câu hỏi và bài toán: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 95). + Phần 3. Mức độ vận dụng thấp (Trang 284). + Phần 4. Mức độ vận dụng cao (Trang 442). Trích dẫn tài liệu khối đa diện, nón – trụ – cầu trong các đề thi thử THPTQG môn Toán: + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì ta có thể chia hình lập phương thành? A. 4 tứ diện đều và 1 hình chóp tam giác đều. B. 5 tứ diện đều. C. 1 tứ diện đều và 4 hình chóp tam giác đều. D. 5 hình chóp tam giác đều, không có tứ diện đều. + Cho khối lập phương ABCD.A0B0C0D0. Mặt phẳng (ACC0) chia khối lập phương trên thành những khối đa diện nào? A. Hai khối lăng trụ tam giác ABC.A0B0C0 và ACD.A0C0D0. B. Hai khối chóp tam giác C0ABC và C0.ACD. C. Hai khối chóp tứ giác C0.ABCD và C0.ABB0A0. D. Hai khối lăng trụ tứ giác ABC.A0B0C0 và ACD.A0C0D0. [ads] + Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB = 2a, AD = BC = CD = a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A đến mặt phẳng (SBC) bằng 2a√15/5, tính theo a thể tích V của khối chóp S.ABCD. + Trong không gian cho đoạn thẳng AB cố định và có độ dài bằng 4. Qua các điểm A và B lần lượt kẻ các tia Ax và By chéo nhau và hợp nhau góc 30◦, đồng thời cùng vuông góc với đoạn thẳng AB. Trên các tia Ax và By lần lượt lấy các điểm M, N sao cho MN = 5. Đặt AM = a, BN = b. Biết thể tích khối tứ diện ABMN bằng √3/3. Tính giá trị biểu thức S = (a2 + b2)2. + Cho tứ diện ABCD có thể tích V. Gọi A1B1C1D1 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V1. Gọi A2B2C2D2 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B1C1D1, C1D1A1, D1A1B1, A1B1C1 và có thể tích V2, . . . cứ như vậy cho tứ diện AnBnCnDn có thể tích Vn với n là số tự nhiên lớn hơn 1. Tính giá trị của biểu thức P = lim n→+∞ (V + V1 + · · · + Vn).

Nguồn: toanmath.com

Đăng nhập để đọc

Lý thuyết và ví dụ về hình học không gian cổ điển - Dương Phước Sang
Tài liệu gồm 27 trang tuyển tập lý thuyết và ví dụ về hình học không gian cổ điển, bao gồm: khái niệm, định nghĩa, tính chất, công thức, dạng toán, phương pháp giải toán và các ví dụ minh họa … Tài liệu được biên soạn bởi thầy Dương Phước Sang. Các chủ đề có trong tài liệu : I. Một số vấn đề cơ bản về quan hệ song song 1. Việc xác định giao tuyến của hai mặt phẳng. 2. Việc xác định giao điểm của đường thẳng và mặt phẳng. 3. Một số định lý về nhận dạng quan hệ song song. II. Một số vấn đề cơ bản về quan hệ vuông góc 1. Phương pháp chứng minh đường thẳng vuông góc với mặt phẳng. 2. Phương pháp chứng minh hai đường thẳng vuông góc. 3. Phương pháp chứng minh hai mặt phẳng vuông góc. III. Phương pháp xác định các loại góc trong không gian 1. Góc giữa hai đường thẳng. 2. Góc giữa đường thẳng và mặt phẳng (cắt nhau nhưng không vuông góc). 3. Góc giữa hai mặt phẳng (cắt nhau). IV. Phương pháp xác định khoảng cách 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa 2 đối tượng song song nhau. 3. Khoảng cách giữa 2 đường thẳng a và b chéo nhau. [ads] V. Một số vấn đề về khối đa diện lồi, khối đa diện đều 1. Tính chất của một hình đa diện, khối đa diện. 2. Bảng tổng hợp tính chất của các đa diện đều. VI. Một số công thức tính toán hình học 1. Công thức tính toán hình học liên quan đến tam giác. 2. Công thức tính toán hình học liên quan đến tứ giác. 3. Công thức thể tính thể tích khối chóp và khối lăng trụ. 4. Công thức tính toán với các khối nón – trụ – cầu. 5. Phương pháp dựng tâm I của mặt cầu ngoại tiếp hình chóp. VII. Một số khối đa diện thường gặp trong các đề thi 1. Hình chóp tam giác đều. 2. Hình tam diện vuông O.ABC (vuông tại O). 3. Hình chóp S.ABC có đường cao SA, AB vuông góc với BC. 4. Hình chóp S.ABC có cạnh bên SA “thẳng đứng”, mặt đáy là tam giác “thường”. 5. Hình chóp S.ABC có 1 mặt bên b “cân tại S” và “dựng đứng”. 6. Hình chóp tứ giác đều. 7. Hình chóp S.ABCD có cạnh bên SA “thẳng đứng”, mặt đáy là “hình chữ nhật”. 8. Hình chóp S.ABCD có 1 mặt bên “cân tại S” và “dựng đứng”. 9. Hình hộp chữ nhật. Công thức tính nhanh một số khối tứ diện đặc biệt. Một số công thức biệt liên quan khối tròn xoay. VIII. Ví dụ giải toán điển hình 
Giải toán 12 khối đa diện và khối tròn xoay - Trần Đức Huyên
Cuốn sách Giải toán 12 khối đa diện và khối tròn xoay được biên soạn bám sát cấu trúc của sách giáo khoa Hình học 12, sách được biên soạn bởi các tác giả Trần Đức Huyên (chủ biên), Nguyễn Duy Hiếu, Phạm Thị Bé Hiền. Chương I . KHỐI ĐA DIỆN. THỂ TÍCH CỦA KHỐI ĐA DIỆN Bài 1. Khái niệm về khối đa diện. + Vấn đề 1. Chứng minh một số tính chất liên quan đến đỉnh, cạnh và mặt của một khối đa diện. + Vấn đề 2. Phân chia và lắp ghép các khối đa diện. Bài 2. Phép đối xứng qua mặt phẳng. Sự bằng nhau của các khối đa diện. + Vấn đề 1. Chứng minh hai hình bằng nhau. + Vấn đề 2. Chứng minh một phép biến hình là phép dời hình. Bài 3. Phép vị tự. Sự đồng dạng của các khối đa diện. Các khối đa diện đều. Bài 4. Thể tích của khối đa diện. [ads] Chương II . MẶT CẦU. MẶT TRỤ. MẶT NÓN Bài 1. Mặt cầu. Khối cầu. + Vấn đề 1. Xác định mặt cầu. + Vấn đề 2. Mặt cầu ngoại tiếp, nội tiếp hình chóp. + Vấn đề 3. Diện tích mặt cầu. Thể tích khối cầu. + Vấn đề 4. Tiếp tuyến của mặt cầu. Bài 2. Mặt trụ. Hình trụ. Khối trụ. + Vấn đề 1. Xác định mặt trụ. + Vấn đề 2. Diện tích xung quanh hình trụ. Thể tích khối trụ. + Vấn đề 3. Thiết diện của hình trụ cắt bởi một mặt phẳng. Bài 3. Mặt nón. Hình nón. Khối nón. + Vấn đề 1. Diện tích xung quanh. Diện tích toàn phần hình nón. Thể tích khối nón. + Vấn đề 2. Hình nón nội tiếp, ngoại tiếp hình chóp. Hình nón nội tiếp, ngoại tiếp mặt cầu. Bài 4. Tổ hợp hình cầu, hình trụ, hình nón.
Chuyên đề mặt nón
Tài liệu gồm 31 trang được biên soạn bởi quý thầy, cô giáo trong nhóm Tài Liệu Dạy Thêm, bao gồm lý thuyết mặt nón, bài tập mẫu, bài tập tự luyện và bài tập trắc nghiệm chuyên đề mặt nón. Nội dung tài liệu : A. KIẾN THỨC CẦN NHỚ : Tóm tắt các khái niệm, tính chất, công thức tính diện tích – thể tích mặt nón, hình nón. 1. Mặt nón tròn xoay. 2. Hình nón tròn xoay. 3. Một số tính chất. 4. Công thức diện tích và thể tích của hình nón. B. BÀI TẬP MẪU C. BÀI TẬP TỰ LUYỆN D. BÀI TẬP TRẮC NGHIỆM 1. Tính diện tích, thể tích mặt nón đơn thuần. 2. Quay tam giác. 3. Mặt nón ngoại tiếp khối đa diện.
Trắc nghiệm nâng cao nón - trụ - cầu - Đặng Việt Đông
Tài liệu gồm 131 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài toán trắc nghiệm nâng cao nón – trụ – cầu có lời giải chi tiết trong chương trình Hình học 12 chương 2, các bài toán được chọn lọc từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi ôn luyện điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. + Vấn đề 1. Mặt nón – khối nón + Vấn đề 2. Mặt trụ – khối trụ + Vấn đề 3. Mặt cầu – khối cầu + Vấn đề 4. Mặt tròn xoay – khối tròn xoay + Vấn đề 5. Ứng dụng thực tế Xem thêm :  Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông (Hình học 12 chương 3)

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6