Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 trường THPT chuyên ĐHSP Hà Nội

Thứ Tư ngày 15 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội dành cho thí sinh thi vào các lớp chuyên Toán, chuyên Tin học; đề gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội : + Xét phương trình bậc hai: ax^2 + bx + c = 0 (1), trong đó a, b, c là các số nguyên dương. Biết rằng các điều kiện sau được thỏa mãn: phương trình (1) có nghiệm; số a2020b chia hết cho 12; số c^3 + 3 chia hết cho c + 3. Hãy tìm giá trị lớn nhất của tổng a + b + c. + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > BC. Một đường tròn đi qua hai đỉnh A, C của tam giác ABC lần lượt cắt các cạnh AB, BC tại hai điểm K, N (K, N khác các đỉnh của tam giác ABC). Giả sử đường tròn (O) và đường tròn ngoại tiếp tam giác BKN cắt nhau tại giao điểm thứ hai là M (M khác B). Chứng minh rằng: a) Ba đường thẳng BM, KN, AC đồng quy tại điểm P. b) Tứ giác MNCP là nội tiếp. c) BM^2 – PM^2 = BK.BA – PC.PA. [ads] + Cho hai số A, B cùng có 2020 chữ số. Biết rằng: số A có đúng 1945 chữ số khác 0, bao gồm 1930 chữ số ngoài cùng về bên trái và 15 chữ số ngoài cùng về bên phải, số B có đúng 1954 chữ số khác 0, bao gồm 1930 chữ số ngoài cùng về bên trái và 24 chữ số ngoài cùng về bên phải. Chứng minh rằng ƯCLN(A;B) là một số có không quá 1954 chữ số.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Bình; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phuơng trình hoặc hệ phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, người đó tăng vận tốc thêm 4 km/h, vì vậy thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Vẽ cát tuyến ADE không đi qua tâm O của đường tròn (D nằm giữa A và E). Gọi M là trung điểm của DE. Chứng minh MA là tia phân giác của góc BMC. + Một dụng cụ đựng chất lỏng có dạng hình trụ với chiều cao bằng 3dm và bán kính đáy bằng 2dm. Dụng cụ này đựng được bao nhiêu lít chất lỏng? (Bỏ qua độ dày của thành và đáy dụng cụ: lấy pi = 3,14).
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hậu Giang; đề thi gồm 08 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hậu Giang : + Cho tam giác nhọn ABC nội tiếp trong đường tròn (O). Vẽ các đường cao AH, BK và CP của tam giác ABC với H BC K AC P AB. a) Chứng minh tứ giác BPKC nội tiếp. b) Chứng minh rằng BAH OAC. c) Đường thẳng PK cắt (O) tại hai điểm E và F. Chứng minh OA là tia phân giác của EAF. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d có phương trình y x 2 7. Hệ số góc của đường thẳng d bằng? + Cho tam giác ABC vuông tại A có AB cm BC cm 6 10 và đường cao AH với H BC. Khi đó độ dài đoạn BH bằng?
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hòa Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hòa Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hòa Bình : + Cho tam giác ABC vuông tại A, đường cao AH, biết HB cm 2, HC cm 8. Tính độ dài các cạnh AB AC. + Một ô tô và một xe máy khởi hành cùng một lúc từ hai tỉnh cách nhau 200km, đi ngược chiều và gặp nhau sau 2 giờ. Tìm vận tốc của ô tô và xe máy, biết rằng nếu vận tốc của ô tô tăng thêm 10 km h và vận tốc của xe máy giảm đi 5 km h thì vận tốc của ô tô bằng 2 lần vận tốc của xe máy. + Cho hình vuông ABCD, các điểm M N thay đổi trên các cạnh BC CD sao cho góc MAN bằng 45° (M N không trùng với các đỉnh của hình vuông). Gọi P Q lần lượt là giao điểm của AM AN với BD. Chứng minh rằng: 1) Tứ giác ABMQ và tứ giác MNQP là các tứ giác nội tiếp. 2) NA là phân giác của góc MND. 3) MN tiếp xúc với một đường tròn cố định.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bản chính thức do sở Giáo dục và Đào tạo thành phố Hải Phòng công bố). Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Bạn Nam hiện có 50000 đồng. Để phục vụ cho việc học tập, bạn muốn mua một quyển sách tham khảo Toán có giá 150000 đồng. Vì thế, bạn Nam đã lên kế hoạch mỗi ngày tiết kiệm 5000 đồng. Gọi số tiền bạn Nam tiết kiệm được sau x (ngày) (gồm cả tiền hiện có và tiền tiết kiệm được hàng ngày) là y (đồng). a) Lập công thức tính y theo x. b) Hỏi sau bao nhiêu ngày bạn Nam có vừa đủ tiền để mua được quyển sách tham khảo Toán? + Bài toán có nội dung thực tế: Lúc 9 giờ sáng, một xe ô tô khởi hành từ A đến B với vận tốc không đổi trên cả quãng đường là 55 km/h. Sau khi xe ô tô này đi được 20 phút thì cũng trên quãng đường đó, một xe ô tô khác bắt đầu đi từ B về A với vận tốc không đổi trên cả quãng đường là 45km/h. Hỏi hai xe ô tô đó gặp nhau lúc mấy giờ? Biết quãng đường AB dài 135 km. + Một vật thể đặc bằng kim loại dạng hình trụ có bán kính đường tròn đáy và chiều cao đều bằng 6 cm. Người ta khoan xuyên qua hai mặt đáy của vật thể đó theo phương vuông góc với mặt đáy, phần bị khoan là một lỗ hình trụ có bán kính đường tròn đáy bằng 2 cm (Hình 1). Tính thể tích phần còn lại của vật thể đó.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6