Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức

Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 4: Số phức. Bên cạnh tài liệu phương trình bậc hai với hệ số thực trên tập số phức dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức: A. KIẾN THỨC CƠ BẢN 1. Căn bậc hai của số phức. 2. Phương trình bậc hai với hệ số thực. B. KỸ NĂNG CƠ BẢN 1. Dạng 1 : Tìm căn bậc hai của một số phức. 2. Dạng 2 : Giải phương trình bậc hai với hệ số thực và các dạng toán liên quan. a. Giải các phương trình bậc hai với hệ số thực. b. Giải phương trình quy về phương trình bậc hai với hệ số thực. Phương pháp 1 : Phân tích đa thức thành nhân tử. + Bước 1: Nhẩm một nghiệm đặc biệt của phương trình. + Bước 2: Đưa phương trình về phương trình bậc nhất hoặc bậc hai bằng cách phân tích đa thức ở vế trái của phương trình thành nhân tử (dùng hằng đẳng thức, chia đa thức hoặc sử dụng lược đồ Hoocne). + Bước 3: Giải phương trình bậc nhất hoặc bậc hai, kết luận nghiệm. Phương pháp 2 : Đặt ẩn phụ: + Bước 1: Phân tích phương trình thành các đại lượng có dạng giống nhau. + Bước 2: Đặt ẩn phụ, nêu điều kiện của ẩn phụ (nếu có). + Bước 3: Đưa phương trình ban đầu về phương trình bậc nhất, bậc hai với ẩn mới. + Bước 4: Giải phương trình, kết luận nghiệm. C. KỸ NĂNG SỬ DỤNG MÁY TÍNH 1. Chọn chế độ tính toán với số phức. 2. Tìm các căn bậc hai của một số phức. D. BÀI TẬP TRẮC NGHIỆM E. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đăng nhập để đọc

Lý thuyết và bài tập số phức có đáp án - Lư Sĩ Pháp
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, tóm tắt lý thuyết, phương pháp giải các dạng toán và tuyển chọn các bài tập tự luận + trắc nghiệm số phức có đáp án, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp THPT môn Toán. A. KIẾN THỨC CẦN NẮM 1. Số phức. 2. Các phép toán trên số phức. 3. Mối liên hệ giữa z và z‾. 4. Phương trình bậc hai với hệ số thực. 5. Cực trị số phức a. Bất đẳng thức tam giác. b. Công thức trung tuyến. c. Tập hợp điểm. 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R với R > 0. Tìm giá trị nhỏ nhất, lớn nhất của |z|. Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1 với r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2|. Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k với k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z|. Dạng 4. Cho hai số phức z1 và z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2|. B. BÀI TẬP TỰ LUẬN Dạng 1. Tìm số phức, số phức liên hợp, phần thực, phần ảo, môđun của một số phức. Dạng 2. Nhìn vào hệ tọa độ Oxy xác định tọa độ của điểm biểu diễn số phức. Dạng 3. Tìm tọa độ điểm biểu diễn của số phức trong mặt phẳng tọa độ Oxy. Dạng 4. Giải phương trình bậc hai trên tập số phức và vận dụng định lí Vi-ét. C. CÂU HỎI TRẮC NGHIỆM
Chuyên đề số phức dành cho học sinh trung bình - yếu - Dương Minh Hùng
Tài liệu gồm 51 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng, hướng dẫn cách giải và tuyển chọn các bài tập trắc nghiệm (mức độ nhận biết – thông hiểu, có đáp án và lời giải chi tiết) chuyên đề số phức, hỗ trợ học sinh có học lực ở mức trung bình – yếu trong quá trình học tập chương trình Giải tích 12 chương 4 và ôn thi tốt nghiệp THPT môn Toán. Bài 1 . ĐỊNH NGHĨA SỐ PHỨC. + Dạng toán 1. Xác định các yếu tố cơ bản của số phức. + Dạng toán 2. Điểm biểu diễn của số phức. + Dạng toán 3. Hai số phức bằng nhau. Bài 2 . PHÉP CỘNG VÀ PHÉP NHÂN SỐ PHỨC. + Dạng toán 1. Thực hiện các phép tính về số phức. + Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua phép toán. + Dạng toán 3. Bài toán quy về giải phương trình, hệ phương trình. + Dạng toán 4. Bài toán tìm tập hợp điểm biểu diễn cho số phức. Bài 3 . PHÉP CHIA HAI SỐ PHỨC. + Dạng toán 1. Thực hiện các phép tính về số phức. + Dạng toán 2. Thực hiện phép tính và từ đó suy ra các yếu tố liên quan tới số phức. + Dạng toán 3. Giải phương trình bậc nhất – suy ra các yếu tố liên quan tới số phức. Bài 4 . PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. + Dạng toán 1. Tìm căn bậc hai của số thực âm. + Dạng toán 2. Tìm nghiệm phức của phương trình bậc hai – tìm các yếu tố liên quan tới hai nghiệm phức chứa lũy thừa. + Dạng toán 3. Tìm nghiệm phương trình bậc ba, phương trình trùng phương. + Dạng toán 4. Mối liên hệ giữa hai nghiệm của phương trình bậc hai.
Chuyên đề số phức ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 229 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề số phức (Giải tích 12 chương 4), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. Chuyên đề 1 . XÁC ĐỊNH SỐ PHỨC VÀ CÁC PHÉP TOÁN SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Xác định các yếu tố cơ bản của số phức. + Dạng toán 2. Biểu diễn hình học cơ bản của số phức. + Dạng toán 3. Thực hiện các phép tính cộng, trừ, nhân, chia cơ bản của số phức. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Tìm số phức thỏa mãn điều kiện cho trước. + Dạng toán 2. Một số bài toán liên quan đến số phức có lũy thừa bậc cao, chứa tham số. Chuyên đề 2 . TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ – GIỎI – XUẤT SẮC (Mức độ 7 – 8 – 9 – 10 điểm). + Dạng toán 1. Tập hợp điểm biểu diễn số phức là đường tròn. + Dạng toán 2. Tập hợp điểm biểu diễn số phức là đường thẳng. + Dạng toán 3. Tập hợp điểm biểu diễn số phức là đường conic. + Dạng toán 4. Tập hợp điểm biểu diễn số phức là một miền. + Dạng toán 5. Một số dạng toán khác liên quan đến tập hợp điểm biểu diễn số phức. Chuyên đề 3 . PHƯƠNG TRÌNH BẬC HAI VÀ PHƯƠNG TRÌNH BẬC CAO SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). Chuyên đề 4 . BÀI TOÁN CỰC TRỊ SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Quỹ tích điểm biểu diễn số phức là đường thẳng. + Dạng toán 2. Quỹ tích điểm biểu diễn số phức là đường tròn. + Dạng toán 3. Quỹ tích điểm biểu diễn số phức là Elip.
300 câu vận dụng cao số phức ôn thi THPT môn Toán
Tài liệu gồm 25 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 300 câu vận dụng cao (VDC) số phức có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 300 câu vận dụng cao số phức ôn thi THPT môn Toán: + Xét các số phức z thỏa mãn điều kiện |z − 1 + i| = 2. Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w = z + 2 − i là: A đường tròn tâm I(−3; 2), bán kính R = 2. B đường tròn tâm I(3; −2), bán kính R = 2. C đường tròn tâm I(1; −1), bán kính R = 2. D đường tròn tâm I(1; 0), bán kính R = 2. + Cho số phức z thỏa mãn z + i/z − i là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là: A Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0, 1). B Hình tròn tâm O, bán kính R = 1 (kể cả biên). C Đường tròn tâm O, bán kính R = 1. D Hình tròn tâm O, bán kính R = 1 (không kể biên). + Trong mặt phẳng tọa độ Oxy, cho hình bình hành OABC có tọa độ điểm A(3; 1), C(−1; 2) (như hình vẽ bên). Số phức nào sau đây có điểm biểu diễn là điểm B?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6