Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề lớp 10 môn Toán ôn thi vào

Nội dung Các chuyên đề lớp 10 môn Toán ôn thi vào Bản PDF - Nội dung bài viết Các chuyên đề lớp 10 môn Toán ôn thi vào Các chuyên đề lớp 10 môn Toán ôn thi vào Được biên soạn từ 190 trang tư liệu, các chuyên đề lớp 10 môn Toán không chỉ giúp học sinh ôn thi hiệu quả mà còn giúp họ rèn luyện kỹ năng giải các bài toán một cách linh hoạt. A. Các bài toán rút gọn căn thức: - Dạng 1: Biểu thức dưới dấu căn là một số thực dương. - Dạng 2: Sử dụng hằng đẳng thức √A^2 = |A|. - Dạng 3: Biểu thức dưới dấu căn đưa được về hằng đẳng thức √A^2 = |A|. - Dạng 4: Rút gọn tổng hợp bằng cách sử dụng trục căn thức, hằng đẳng thức, phân tích thành nhân tử. - Dạng 5: Bài toán chứa ẩn dưới dấu căn và các ý toán phụ. B. Các bài toán giải hệ phương trình: - Giải hệ phương trình và một số ý phụ. - Giải hệ phương trình bậc cao. C. Giải bài toán bằng cách lập hệ phương trình: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. D. Giải bài toán bằng cách lập phương trình bậc hai: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. E. Hàm số bậc nhất: F. Hàm số bậc hai: - Sự tương giao giữa đường thẳng và đồ thị hàm số bậc hai. G. Phương trình bậc hai một ẩn, hệ thức Vi-et và ứng dụng: - Dạng 1: Giải phương trình và phương trình quy về phương trình bậc hai. - Dạng 2: Hệ thức Vi-et và ứng dụng. - Dạng 3: Phương trình chứa tham số. H. Bất đẳng thức: - Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên. - Kỹ thuật chọn điểm rơi trong bài toán cực trị đạt được tại tâm.

Nguồn: sytu.vn

Đăng nhập để đọc

Trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán
Tài liệu gồm 242 trang, được biên soạn bởi các tác giả: Trần Hữu Tháp (Chủ biên), Nguyễn Văn Chi, Huỳnh Thanh Hùng, Hồ Tấn Yên, Định Văn Thân, Đoàn Văn Trúc; trình bày trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán. Nội dung của tài liệu này dựa trên chương trình bộ môn Toán cấp THCS (trọng tâm là lớp 9) hiện hành và hướng dẫn nội dung ôn thi vào lớp 10 của sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Cấu trúc của tài liệu gồm có bốn phần chính: + Phần một : Đại số. + Phần hai : Hình học. + Phần ba : Số học và toán suy luận lô-gic (dành cho học sinh khá – giỏi). + Phần tư : Một số đề thi vào lớp 10 THPT và THPT chuyên Lê Khiết. Mục lục tài liệu trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán: Lời nói đầu 3. Phần một . ĐẠI SỐ. Chủ đề 1. Biến đổi biểu thức đại số. I. Kiến thức cần sử dụng 5. II. Các dạng toán thường gặp 5. III. Bài tập vận dụng 11. Chủ đề 2. Phương trình và Hệ phương trình. I. Kiến thức cần sử dụng 14. II. Các dạng toán thường gặp 15. III. Bài tập vận dụng 30. Chủ đề 3. Hàm số và đồ thị. I. Kiến thức cần sử dụng 35. II. Các dạng toán thường gặp 35. III. Bài tập vận dụng 41. Chủ đề 4. Bất đẳng thức − Bất phương trình. I. Kiến thức cần sử dụng 43. II. Các dạng toán thường gặp 44. III. Bài tập vận dụng 50. Gợi ý − Hướng dẫn giải phần Đại số 52. Phần hai . HÌNH HỌC. Chủ đề 1. Tính toán các đại lượng hình học. I. Kiến thức cần sử dụng 94. II. Các dạng toán thường gặp 94. III. Bài tập vận dụng 110. Chủ đề 2. Chứng minh các yếu tố hình học, quan hệ hình học. I. Kiến thức cần sử dụng 112. II. Các dạng toán thường gặp 112. III. Bài tập vận dụng 142. Chủ đề 3. Tập hợp điểm. I. Kiến thức cần sử dụng 147. II. Các dạng toán thường gặp 147. III. Bài tập vận dụng 157. Chủ đề 4. Cực trị hình học. I. Kiến thức cần sử dụng 158. II. Các dạng toán thường gặp 158. III. Bài tập vận dụng 170. Gợi ý − Hướng dẫn giải phần Hình học 177. Phần ba . SỐ HỌC. Chủ đề 1 . Tính chia hết – Đồng dư thức. 1. Phương pháp giải 201. 2. Các ví dụ 201. 3. Bài tập tự luyện 205. Chủ đề 2 . Số nguyên tố – Hợp số – Số chính phương. 1. Phương pháp giải 206. 2. Các ví dụ 206. 3. Bài tập tự luyện 208. Chủ đề 3 . Phương trình nghiệm nguyên. 1. Phương pháp giải 209. 2. Các ví dụ 209. 3. Bài tập tự luyện 212. Chủ đề 4 . Toán suy luận lô-gic. 1. Phương pháp giải 212. 2. Các ví dụ 213. 3. Bài tập tự luyện 218. Gợi ý − Hướng dẫn giải phần Số học 220. Phần bốn . Một số đề thi vào lớp 10 THPT và THPT chuyên Lê Khiết 229.
Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10
Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.
Chuyên đề quỹ tích ôn thi vào lớp 10
Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP
Chuyên đề những định lý hình học nổi tiếng ôn thi vào lớp 10
Tài liệu gồm 39 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề những định lý hình học nổi tiếng, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. 1. Đường thẳng Euler. 2. Đường thẳng Simmon. 3. Đường thẳng Steiner. 4. Đường tròn Euler. 5. Điểm Miquel. 6. Đường tròn Miquel. 7. Định lý Miquel. 8. Định lý Lyness. 9. Định lý Lyness mở rộng (bổ đề Sawayama). 10. Một hệ quả của định lý Lyness mở rộng. 11. Định lý Ptolemy cho tứ giác nội tiếp. 12. Định lý Ptolemy cho tứ giác bất kỳ. 13. Định lý Brocard. 14. Định lý con bướm với đường tròn. 15. Định lý con bướm mở rộng với đường tròn. 16. Định lý con bướm với cặp đường thẳng. 17. Định lý Shooten. 18. Hệ thức Van Aubel. 19. Định lý Ce’va. 20. Định lý Menelaus.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6