Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán 9 năm 2024 - 2025 phòng GDĐT Bình Long - Bình Phước

Nguồn: toanmath.com

Đăng nhập để đọc

Đề khảo sát HSG Toán 9 năm 2022 - 2023 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Kim Thành – Hải Dương : + Tìm a b để đa thức 3 2 f x x ax b 2 chia cho đa thức x − 1 dư 2, chia cho đa thức x − 2 dư 17. Cho abc là ba số nguyên tố cùng nhau thỏa mãn: 111 c ab. Chứng minh: M ab là số chính phương. + Cho tam giác ABC vuông tại A, có đường cao AH. Kẻ HI vuông góc với AB, HK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: a) 3 3 BI AB CK AC b) CK BH BI CH AH BC. Cho ∆ABC có G là trọng tâm, một đường thẳng bất kỳ qua G, cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: 3 AB AC AM AN. + Cho các số dương x, y, z thay đổi thỏa mãn: xy yz zx xyz. Tìm giá trị lớn nhất của biểu thức: 111 43 433 4 M x yz x y z xy z.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 29 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = –4×2 có đồ thị là parabol (P) và một điểm Q(0;−9). Hãy tìm hai điểm M, N trên (P) và có tọa độ là những số nguyên sao cho tứ giác OMQN là một tứ giác lồi có diện tích bằng 27/2 cm2 (đơn vị trên các trục tọa độ là cm). + Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), tiếp tuyến tại A của (O) cắt BC tại M. Kẻ tiếp tuyến MD của (O) (D khác A). Gọi G, E, F lần lượt là hình chiếu vuông góc của D lên BC, AB, AC. Chứng minh rằng: 1) MA2 = MB.MC và BC = 2R.sin BAC. 2) AB DB AC DC. 3) G là trung điểm EF. + Cho tam giác ABC vuông tại A. Từ một điểm I nằm trong tam giác ta kẻ IM vuông góc với BC, IN vuông góc với AC, IK vuông góc với AB (M thuộc BC, N thuộc AC, K thuộc AB). Xác định vị trí điểm I sao cho tổng IM2 + IN2 + IK2 nhỏ nhất.
Đề học sinh giỏi thành phố Toán THCS năm 2022 - 2023 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi thành phố Toán THCS năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. a) Chứng minh tứ giác BCQP nội tiếp. b) Hai đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Chứng minh rằng 2 MH MK MA. c) Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP. Chứng minh ba điểm IHK thẳng hàng. + Tìm độ dài nhỏ nhất của cạnh một hình vuông sao cho có thể đặt vào trong nó 5 hình tròn có bán kính bằng 1, biết rằng các hình tròn này đôi một không có quá một điểm chung. + Chứng minh rằng 3 6 6 6 … 6 1 5 6 27 3 6 6 … 6 (trong đó biểu thức chứa căn có 2023 dấu căn ở tử số và 2022 dấu căn ở mẫu số).
Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. a) Chứng minh rằng bốn điểm OM H I cùng thuộc một đường tròn. b) Gọi P là giao điểm của OI và AB. Chứng minh rằng tam giác MNP đều. c) Xác định vị trí điểm M để tam giác IAB có chu vi nhỏ nhất. + Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? + Cho P x là một đa thức bậc n với hệ số nguyên, n ≥ 2. Biết P P 1 2 2023. Chứng minh rằng phương trình P x 0 không có nghiệm nguyên.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6