Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài 1 Bài tập có đáp án chi tiết về xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng

Nguồn: onluyen.vn

Đăng nhập để đọc

Các dạng toán và bài tập giới hạn có lời giải chi tiết - Nguyễn Bảo Vương
Tài liệu gồm 140 trang trình bày các dạng toán trong chương trình Đại số và Giải tích 11 chương 4 – Giới hạn, với các chủ đề: giới hạn dãy số, giới hạn hàm số và hàm số liên tục, sau mỗi phần đều có bài tập trắc nghiệm và tự luận giới hạn có lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. 1. GIỚI HẠN DÃY SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Phương pháp: + Để chứng minh lim un = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un| < a với mọi n > na. + Để chứng minh lim un = 1 ta chứng minh lim(un – 1) = 0. + Để chứng minh lim un = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M với mọi n > nM. + Để chứng minh lim un = -∞ ta chứng minh lim (-un) = +∞. + Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Vấn đề 2 . Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản Phương pháp: Sử dụng các định lí về giới hạn, biến đổi đưa về các giới hạn cơ bản. + Khi tìm lim f(n)/g(n) ta thường chia cả tử và mẫu cho n^k, trong đó k là bậc lớn nhất của tử và mẫu. + Khi tìm lim [(f(n))^1/k – (g(n))^1/m] trong đó lim f(n) = lim g(n) = +∞ ta thường tách và sử dụng phương pháp nhân lượng liên hợp. 2. GIỚI HẠN CỦA HÀM SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Vấn đề 2 . Tìm giới hạn của hàm số + Bài toán 01: Tìm lim f(x) khi x → x0 biết xác định tại x0 + Bài toán 02. Tìm lim f(x)/g(x) khi x → x0 trong đó f(x0) = g(x0) = 0 + Bài toán 03: Tìm lim f(x)/g(x) khi x → ±∞, trong đó f(x), g(x) → ∞, dạng này ta còn gọi là dạng vô định ∞/∞ + Bài toán 04: Dạng vô định: ∞ – ∞ và 0.∞ + Bài toán 05: Dạng vô định các hàm lượng giác [ads] 3. HÀM SỐ LIÊN TỤC Vấn đề 1 . Xét tính liên tục của hàm số tại một điểm Phương pháp: + Tìm giới hạn của hàm số y = f(x) khi x → x0 và tính f(x0) + Nếu tồn tại lim f(x) khi x → x0 thì ta so sánh với lim f(x) khi x → x0 với f(x0) Vấn đề 2 . Xét tính liên tục của hàm số trên một tập Phương pháp: Sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ … Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó. Vấn đề 3 . Chứng minh phương trình có nghiệm Phương pháp: + Để chứng minh phương trình f(x) = 0 có ít nhất một nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và có hai số a, b ∈ D sao cho f(a).f(b) < 0. + Để chứng minh phương trình f(x) = 0 có k nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai; ai+1) (i = 1, 2, …, k) nằm trong D sao cho f(ai).f(ai+1) < 0.
Bài tập trắc nghiệm giới hạn có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 58 trang tuyển chọn và giải chi tiết các bài tập trắc nghiệm giới hạn trong chương trình Đại số và Giải tích 11 chương 4, tài liệu bao gồm nhiều bài tập thuộc mức độ vận dụng được chia thành nhiều dạng toán khác nhau. Tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Nội dung tài liệu : Bài 01. Giới hạn của dãy số + Vấn đề 1. Dãy số dạng phân thức + Vấn đề 2. Dãy số chứa căn thức + Vấn đề 3. Dãy số chứa hàm lũy thừa + Vấn đề 4. Tổng của cấp số nhân lùi vô hạn Bài 02. Giới hạn của hàm số + Vấn đề 1. Dãy số có giới hạn hữu hạn + Vấn đề 2. Giới hạn một bên + Vấn đề 3. Giới hạn tại vô cực + Vấn đề 4. Dạng vô định 0/0 + Vấn đề 5. Dạng vô định ∞/∞ + Vấn đề 6. Dạng vô định ∞ – ∞ + Vấn đề 7. Dạng vô định 0.∞ [ads] Bài 03. Hàm số liên tục + Vấn đề 1. Xét tính liên tục của hàm số + Vấn đề 2. Hàm số liên tục tại một điểm + Vấn đề 3. Hàm số liên tục trên một khoảng + Vấn đề 4. Số nghiệm của phương trình trên một khoảng Xem thêm :  Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết – Nguyễn Phú Khánh, Huỳnh Đức Khánh (Đại số và Giải tích 11 chương 2)
Bài tập nâng cao giới hạn của dãy số - Nguyễn Minh Tuấn
Tài liệu gồm 14 trang hướng dẫn giải các bài tập nâng cao giới hạn của dãy số được chọn lọc từ các đề thi HSG cấp tỉnh, cấp quốc gia, quốc tế, các bài trên các tạp chí nổi tiếng. Trong môn Toán ở trường THPT, các bài toán về dãy số và giới hạn dãy số là một phần quan trọng của giải tích toán học. Dãy số ngày càng được quan tâm đúng mức và tỏ ra có sức hấp dẫn mạnh mẽ nhờ vẽ đẹp và tính độc đáo của phương pháp và kỹ thuật giải chúng cũng như yêu cầu cao về tư duy cho người giải. Các bài toán dãy số không những rèn luyện tư duy sáng tạo, trí thông minh mà còn đem lại say mê và yêu thích môn Toán của người học. Trong các kì thi học sinh giỏi cấp Tỉnh, cấp Quốc gia, Quốc tế các bài toán liên quan đến dãy số đặc biệt là giới hạn dãy số được đề cập rất nhiều và có giá trị phân hóa chất lượng bài thi cao. [ads] Trong bài viết này tác giả trình bày một số phương pháp tìm giới hạn dãy số: + Phương pháp sử dụng định nghĩa + Tính chất của các dãy số đặc biệt + Định lí kẹp + Phương pháp sử dụng tính đơn điệu và bị chặn + Phương pháp dùng sai phân + Phương pháp sử dụng tính chất của hàm số + Phương trình + Phương pháp lượng giác hóa Một điều quan trọng là sử dụng các kỹ thuật biến đổi linh hoạt, phù hợp, hiểu được các ý tưởng trong từng phương pháp để giải quyết bài toán với hiệu quả tốt nhất. Bài viết được trình bày theo hệ thống: + Kiến thức sử dụng + Ý tưởng chính của phương pháp + Các ví dụ và hướng dẫn giải + Bài tập tự giải. Tác giả hy vọng bài viết này sẽ giúp các em học sinh bổ sung kiến thức về phần dãy số trong các kì thi học sinh giỏi và tài liệu tham khảo bổ ích cho bạn đọc.
Bài tập quan hệ song song trong không gian - Võ Công Trường
Tài liệu gồm 73 trang, được biên soạn bởi thầy giáo Võ Công Trường, phân dạng và tuyển chọn bài tập quan hệ song song trong không gian trong chương trình môn Toán lớp 11. MỤC LỤC : Chương IV . ĐƯỜNG THẲNG VÀ MẶT PHẲNG. QUAN HỆ SONG SONG TRONG KHÔNG GIAN 3. BÀI 1 . ĐIỂM, ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 3. I. TÓM TẮT LÝ THUYẾT 3. II. DẠNG TOÁN THƯỜNG GẶP 5. + Dạng 1. Tìm giao tuyến của hai mặt phẳng 5. + Dạng 2. Tìm giao điểm của đường thẳng và mặt phẳng 6. + Dạng 3. Ba điểm thẳng hàng, ba đường thẳng đồng quy 7. + Dạng 4. Thiết diện 7. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 8. IV. BÀI TẬP TRẮC NGHIỆM 10. BÀI 2 . HAI ĐƯỜNG THẲNG SONG SONG 14. I. TÓM TẮT LÝ THUYẾT 14. II. DẠNG TOÁN THƯỜNG GẶP 15. + Dạng 1. Tìm giao tuyến hai mặt phẳng 15. + Dạng 2. Tìm giao điểm của đường thẳng và mặt phẳng; thiết diện của hình chóp 16. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 16. IV. BÀI TẬP TRẮC NGHIỆM 18. BÀI 3 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG 20. I. TÓM TẮT LÝ THUYẾT 20. II. DẠNG TOÁN THƯỜNG GẶP 21. + Dạng 1. Chứng minh đường thẳng song song mặt phẳng 21. + Dạng 2. Tìm giao tuyến của hai mặt phẳng. Thiết diện qua một điểm và song song với một đường thẳng 22. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 22. IV. BÀI TẬP TRẮC NGHIỆM 25. BÀI 4 . HAI MẶT PHẲNG SONG SONG 27. I. TÓM TẮT LÝ THUYẾT 27. II. DẠNG TOÁN THƯỜNG GẶP 28. + Dạng 1. Chứng minh hai mặt phẳng song song 28. + Dạng 2. Chứng minh đường thẳng song song với mặt phẳng 28. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 29. IV. BÀI TẬP TRẮC NGHIỆM 31. BÀI 5 . PHÉP CHIẾU SONG SONG 34. I. TÓM TẮT LÝ THUYẾT 34. II. DẠNG TOÁN THƯỜNG GẶP 35. + Dạng 1. Vẽ hình biểu diễn của một hình trong không gian 35. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 37. IV. BÀI TẬP TRẮC NGHIỆM 38. BÀI TẬP ÔN CHƯƠNG IV 40. PHẦN 1. BÀI TẬP TRẮC NGHIỆM 40. PHẦN 2. BÀI TẬP TỰ LUẬN THAM KHẢO 45. PHẦN 3. BÀI TẬP TỰ LUẬN TỰ LUYỆN 49.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6