Nội dung Đề tuyển sinh lớp 10 môn Toán 2019 trường PTNK TP. HCM (không chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh lớp 10 môn Toán 2019 trường PTNK TP. HCM (không chuyên) Đề tuyển sinh lớp 10 môn Toán 2019 trường PTNK TP. HCM (không chuyên) Đề tuyển sinh lớp 10 môn Toán của trường PTNK TP. HCM (không chuyên) năm học 2018-2019 đã được soạn và tổ chức thi vào ngày 26/05/2018. Đề thi này được thiết kế nhằm lựa chọn những học sinh khối 10 có năng lực vào học tại trường Phổ Thông Năng Khiếu, Đại học Quốc gia TP. HCM. Đề thi bao gồm 1 trang với 5 bài toán tự luận, thời gian làm bài là 120 phút và đề thi đi kèm với lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán năm 2018-2019 trường PTNK TP. HCM: 1. Cho phương trình \( x^2-x+3m-11=0 \) (1). a) Với giá trị nào của m thì phương trình (1) có nghiệm kép? Hãy tìm nghiệm kép đó. b) Tìm m sao cho phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn \( 2017x_1+2018x_2=2019 \). 2. Tứ giác ABCD nội tiếp đường tròn có tâm là O và bán kính R. Góc CAD = 45 độ, AC vuông góc với BD tại I, AD lớn hơn BC. Dựng CK vuông góc với AD tại K, CK cắt BD tại H và cắt đường tròn (T) tại E (E không trùng với C). a) Tính số đo góc COD, chứng minh rằng C, I, K, D là các điểm thuộc cùng một đường tròn và AC bằng BD. b) Chứng minh rằng A là tâm đường tròn ngoại tiếp tam giác BHE. Tính IK theo R. c) Đường thẳng IK cắt AB tại F. Chứng minh rằng O là trực tâm của tam giác AIK và CK.CB bằng CF.CD.
Nguồn: sytu.vn