Nội dung Đề thi chọn HSG lớp 10 môn Toán lần 1 năm 2020 2021 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn Học sinh giỏi lớp 10 môn Toán lần 1 năm học 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội Đề thi chọn Học sinh giỏi lớp 10 môn Toán lần 1 năm học 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội Ngày Thứ Năm 10 tháng 09 năm 2020, Trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 10 năm học 2020-2021 lần thứ nhất. Đề thi chọn Học sinh giỏi môn Toán lớp 10 lần 1 năm 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 180 phút (không tính thời gian phát đề). Trích đề thi chọn HSG môn Toán lớp 10 lần 1 năm 2020-2021 trường THPT chuyên KHTN - Hà Nội: Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Điểm P nằm trong tam giác sao cho PB = PC. Tìm điểm Q trên đường tròn ngoại tiếp tam giác PBC và nằm trong tam giác sao cho PQA + OAP = 90 độ. Gọi M là trung điểm của BC. Điểm K thuộc cạnh BC sao cho KAB = MAC. Chứng minh rằng QK vuông góc QP. Tìm tất cả các số nguyên dương n sao cho tất cả các ước nguyên dương (phân biệt) của n có thể sắp xếp thành một bảng hình chữ nhật trong đó tổng các số trên mỗi hàng và mỗi cột đều bằng nhau. Tìm tất cả các bộ ba số nguyên dương (x, y, p) với p là số nguyên tố thỏa mãn: x^2 - 3xy + p^2.y^2 = 12y. Đề thi này khá khó, đòi hỏi sự tỉ mỉ và logic cao từ các thí sinh. Hy vọng các em sẽ hoàn thành tốt và đạt kết quả cao trong kỳ thi này.
Nguồn: sytu.vn