Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn các bài toán phương trình vô tỉ - Trần Quốc Việt (Diễn đàn K2PI)

Tài liệu gồm 97 trang tuyển chọn các bài toán phương trình vô tỷ hay và đặc sắc có lời giải chi tiết, tài liệu được tổng hợp bởi tác giả Trần Quốc Việt. Kỳ thi THPT Quốc Gia vừa qua với nhiều thay đổi lớn trước ngưỡng của đổi mới Giáo Dục. Chúng ta cũng đã được thấy được sự thay đổi đột phá trong đề thi môn Toán nói riêng. Về cấu trúc đề thi đã được phân loại gồm 60% phần dễ đủ cho học sinh thi tốt nghiệp và 40% phần khó và cực khó nhằm phân loại mạnh học sinh để xét tuyển vào các trường Đại học- Cao đẳng. Trong đó nhóm câu phương trình, hệ phương trình không còn dừng lại ở mức độ dễ kiếm điểm như đề thi những năm trước, mức độ khó của nhóm câu này nằm ở con điểm 9 nếu ta chinh phục được nó. Và nói riêng đề thi Toán 2015 thì là một câu phương trình vô tỷ chỉ mới xuất hiện lại đây sau mấy năm trước đó đề thi đều ra hệ phương trình nên xu hướng học sinh bây giờ theo học phương trình vô tỷ khá nhiều. Và đối với những người đam mê Toán luôn muốn phát triển thì họ chả bao giờ ngừng nghỉ học cho dù là nó có liên quan đến thi cử hay không. [ads] Vì vậy mà tiếp nối sự thành công của TOPIC Phương trình vô tỷ 2014 của thầy Phạm Kim Chung tại diễn đàn Toán -THPT K2pi thì TOPIC Phương trình vô tỷ 2015 của anh Nguyễn Duy Hồng cũng rất thành công khi quét kỹ hết các dạng toán thường gặp của phương trình vô tỷ, mở ra được cái nhìn chuyên sâu về mọi bài toán giúp được một phần nào đó cho các thí sinh vượt qua được kỳ thi. Nay tôi tổng hợp các bài toán lại thành tài liệu tiếp tục phục vụ việc ôn thi kỳ thi THPT Quốc Gia tiếp theo. Mong đây sẽ là tài liệu bổ ích cho việc ôn thi của các bạn.

Nguồn: toanmath.com

Đăng nhập để đọc

Sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8) - Lương Tuấn Đức
Tài liệu gồm 132 trang hướng dẫn sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Các nội dung chủ đạo được đề cập trong tài liệu: + KẾT HỢP SỬ DỤNG PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ (TIẾP THEO) GIẢI HỆ PHƯƠNG TRÌNH CHỨA CĂN THỨC. + PHỐI HỢP PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ. + SỬ DỤNG TÍNH CHẤT ĐƠN ĐIỆU HÀM SỐ. + SỬ DỤNG KẾT HỢP ĐÁNH GIÁ – BẤT ĐẲNG THỨC. + TỔNG HỢP CÁC PHÉP GIẢI PHƯƠNG TRÌNH CHỨA CĂN. + BÀI TOÁN NHIỀU CÁCH GIẢI.
Sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2) - Lương Tuấn Đức
Tài liệu gồm 119 trang hướng dẫn sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2), các bài toán trong tài liệu đều được phần tích và giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Phương pháp sử dụng biến đổi tương đương – nâng cao lũy thừa là một phương pháp cơ bản, đơn giản nhất, các bạn đã bước đầu làm quen thông qua 7 tiêu mục. Hầu hết các phương pháp khác đều ít nhiều quy về dạng cơ bản nâng lũy thừa, điều quan trọng là quá trình thu gọn bài toán. Tiếp tục dựa trên nền tảng ấy, mang tính kế thừa và phát huy thêm một bậc, phương pháp sử dụng Đại lượng liên hợp – Trục căn thức – Hệ tạm thời là một phương pháp mạnh và có nhiều ưu việt, có hiệu lực với nhiều lớp phương trình, bất phương trình. Tiếp theo phần 1, tài liệu này trân trọng giới thiệu và gửi tới toàn thể bạn đọc Lý thuyết sử dụng đại lượng liên hợp – trục căn thức – hệ tạm thời (phần 2). Nội dung chủ đạo là các ví dụ minh họa mở đầu cho các bài toán liên quan đến xác định nghiệm (trường hợp 1 nghiệm nguyên – nghiệm hữu tỷ), kỹ thuật liên hợp hằng số và xử lý, đánh giá phương trình hệ quả, tạm thời dừng chân với lớp bài toán chứa căn bậc hai. [ads] Các nội dung chủ đạo của tài liệu: + SỬ DỤNG ĐẠI LƯỢNG LIÊN HỢP – TRỤC CĂN THỨC – HỆ PHƯƠNG TRÌNH TẠM THỜI ĐỐI VỚI BÀI TOÁN CĂN BẬC HAI. + XÁC ĐỊNH NGHIỆM – LIÊN HỢP HẰNG SỐ. + ĐÁNH GIÁ – XỬ LÝ HỆ QUẢ SAU LIÊN HỢP. + BÀI TOÁN NHIỀU CÁCH GIẢI.
Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) - Lương Tuấn Đức
Tài liệu gồm 121 trang hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh THPT – Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác. Nội dung mang tính kế thừa và phát huy với phương châm chủ đạo là dùng hai ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng (tiếp theo), xoay quanh các bài toán với căn bậc ba. Đây vẫn là một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. [ads] Kiến thức và kỹ năng cần chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số, giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số, giải hệ phương trình đối xứng loại 1, loại 2; hệ phương trình đồng bậc; hệ phương trình đa ẩn. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.
Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai) - Lương Tuấn Đức
Tài liệu gồm 130 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai), đây là dạng toán thường gặp trong chương trình Đại số 10 chương 3 và chương 4, các bài toán trong tài liệu đều được phân tích và giải quyết chi tiết. Nội dung chủ đạo là dùng hai hoặc nhiều ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng, một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. [ads] Kiến thức và kỹ năng chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số, giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số, giải hệ phương trình đối xứng loại 1, loại 2; hệ phương trình đồng bậc; hệ phương trình đa ẩn. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6