Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán về quan hệ chia hết trong tập hợp số

Tài liệu gồm 95 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về quan hệ chia hết trong tập hợp số, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Định nghĩa phép chia. 2. Một số tính chất cần nhớ. 3. Một số dấu hiệu chia hết. B. CÁC DẠNG TOÁN THƯỜNG GẶP + Dạng 1: Sử dụng tính chất trong n số nguyên liên tiếp có một và chỉ một số chia hết cho n (n ≥ 1). + Dạng 2: Phân tích thành nhân tử. + Dạng 3: Sử dụng phương pháp tách tổng. + Dạng 4: Sử dụng hằng đẳng thức. + Dạng 5: Sử dụng phương pháp xét số dư. + Dạng 6: Sử dụng phương pháp phản chứng. + Dạng 7: Sử dụng phương pháp quy nạp. + Dạng 8: Sử dụng nguyên lý Dirichlet. + Dạng 9: Xét đồng dư. + Dạng 10: Tìm điều kiện biến để chia hết. + Dạng 11: Các bài toán cấu tạo số liên quan đến tính chia hết của số tự nhiên. + Dạng 12: Các bài chia hết sử dụng định lý Fermat. + Dạng 13: Các bài toán chia hết liên quan đến đa thức. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào lớp 10
Tài liệu gồm 31 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hàm số bậc nhất và hàm số bậc hai, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. Vấn đề 1 : HÀM SỐ BẬC NHẤT. 1. Định nghĩa: + Hàm số bậc nhất là hàm số được cho bởi công thức: y ax b trong đó a và b là các số thực cho trước và a ≠ 0. + Khi b = 0 thì hàm số bậc nhất trở thành hàm số y ax biểu thị tương quan tỉ lện thuận giữa y và x. 2. Tính chất: a) Hàm số bậc nhất xác định với mọi giá trị x R. b) Trên tập số thực, hàm số y ax b đồng biến khi a > 0 và nghịch biến khi a < 0. 3. Đồ thị hàm số y ax b với (a ≠ 0). + Đồ thị hàm số y ax b là đường thẳng cắt trục tung tại điểm có tung độ bằng b và cắt trục hoành tại điểm có hoành độ bằng b a. + a gọi là hệ số góc của đường thẳng y ax b. 4. Cách vẽ đồ thị hàm số y ax b. + Vẽ hai điểm phân biệt của đồ thị rồi vẽ đường thẳng đi qua 2 điểm. + Thường vẽ đường thẳng đi qua 2 giao điểm của đồ thị với các trục tọa độ. 5. Kiến thức bổ sung. Trong mặt phẳng tọa độ cho hai điểm Ax y Bx y thì 2 2 AB x x y y. Điểm M xy là trung điểm của AB thì 12 12 ; 2 2. 6. Điều kiện để hai đường thẳng song song hai đường thẳng vuông góc. Cho hai đường thẳng d y ax b 1 và đường thẳng d y ax b 2 với a a. Vấn đề 2 : HÀM SỐ BẬC HAI. Hàm số 2 y ax (a ≠ 0): Hàm số xác định với mọi số thực x. Tính chất biến thiên: + Nếu a > 0 thì hàm số đồng biến khi x > 0 nghịch biến khi x < 0. + Nếu a < 0 thì hàm đồng biến khi x < 0 nghịch biến khi x > 0. Đồ thị hàm số là một đường Parabol nhận gốc tọa độ O làm đỉnh, nhận trục tung làm trục đối xứng. Khi a > 0 thì Parabol có bề lõm quay lên trên, khi a < 0 thì Parabol có bề lõm quay xuống dưới. Đối với phương trình bậc hai 2 ax bx c a 0 0 có biệt thức 2 ∆ b ac 4. Nếu ∆ < 0 thì phương trình vô nghiệm. Nếu ∆ = 0 thì phương trình có nghiệm kép 2 b x a. Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: 1 2 b x a.
Chuyên đề biến đổi đại số ôn thi vào lớp 10
Tài liệu gồm 31 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. KIẾN THỨC CẦN NHỚ 1.1 CĂN THỨC BẬC 2. Kiến thức cần nhớ: Căn bậc hai của số thực a là số thực x sao cho 2 x a. Cho số thực a không âm. Căn bậc hai số học của a kí hiệu là a là một số thực không âm x mà bình phương của nó bằng a. Với hai số thực không âm a b ta có: a b ab. Khi biến đổi các biểu thức liên quan đến căn thức bậc 2 ta cần lưu ý: phép khử căn thức ở mẫu; phép trục căn thức ở mẫu. 1.2 CĂN THỨC BẬC 3 – CĂN BẬC n. 1.2.1 CĂN THỨC BẬC 3. Kiến thức cần nhớ: Căn bậc 3 của một số a kí hiệu là 3 a là số x sao cho 3 x a. Mỗi số thực a đều có duy nhất một căn bậc 3. 1.2.2 CĂN THỨC BẬC n. Cho số a Rn Nn 2. Căn bậc n của một số a là một số mà lũy thừa bậc n của nó bằng a. Trường hợp n là số lẻ: n k kN 2 1. Mọi số thực a đều có một căn bậc lẻ duy nhất. Trường hợp n là số chẵn: n kk N 2. Mọi số thực a > 0 đều có hai căn bậc chẵn đối nhau. Căn bậc chẵn dương kí hiệu là 2k a (gọi là căn bậc 2k số học của a). Căn bậc chẵn âm kí hiệu là 2k a 2 0 k ax x và 2k x a. Mọi số thực a < 0 đều không có căn bậc chẵn. MỘT SỐ VÍ DỤ MỘT SỐ BÀI TẬP RÈN LUYỆN
Một số bài toán về đường cố định và điểm cố định
Tài liệu gồm 71 trang, tuyển chọn một số bài toán về đường cố định và điểm cố định hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ Bài toán về đường cố định và điểm cố định là một bài toán khó, đòi hỏi học sinh phải có kĩ năng phân tích bài toán và suy nghĩ, tìm tòi một cách sâu sắc để tìm ra được lời giải. Một vấn đề quan trọng khi giải bài toán về đường cố định và điểm cố định dự đoán được yếu tố cố định. Thông thường ta dự đoán các yếu tố cố định bằng các phương pháp sau: + Giải bài toán trong trường hợp đặc biệt để thấy được yếu tố cố định cần tìm. Từ đó ta suy ra trường hợp tổng quát. + Xét các đường đặc biệt để của một họ đường để thấy được yếu tố cố định cần tìm. + Dựa vào tính đối xứng, tính độc lập, bình đẳng của các đối tượng để hạn chế phạm vi của hình tứ đó có thể tìm được yếu tố cố định. Khi giải bài toán về đường cố định và điểm cố định ta thường thực hiện các bước như sau: a) Tìm hiểu bài toán: Khi tìm hiểu bài toán ta xác định được: + Yếu tố cố định: điểm, đường …. + Yếu tố chuyển động: điểm, đường …. + Yếu tố không đổi: độ dài đoạn, độ lớn góc …. + Quan hệ không đổi: song song, vuông góc, thẳng hàng …. b) Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt của yếu tố chuyển động để dự đoán yếu tố cố định. Thông thường ta tìm một hoặc hai vị trí đặc biệt cộng thêm với các đặc điểm bất biến khác như tính chất đối xứng, song song, thẳng hàng … để dự đoán điểm cố định. c) Tìm tòi hướng giải: Từ việc dự đoán yếu tố cố định tìm mối quan hệ giữa yếu tố đó với các yếu tố chuyển động, yếu tố cố định và yếu tố không đổi. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Một số bài toán về diện tích
Tài liệu gồm 69 trang, tuyển chọn một số bài toán về diện tích hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Các tính chất cơ bản của diện tích đa giác. Mỗi đa giác có một diện tích xác định, diện tích đa giác là một số dương. Diện tích đa giác có các tính chất sau: + Hai đa giác bằng nhau có diện tích bằng nhau. + Hình vuông cạnh có độ dài bằng 1(đvđd) thì diện tích là 1(đvdt), hình vuông đó được gọi là hình vuông đơn vị. + Nếu đa giác H được chia thành các đa giác H H H 1 2 n đôi một không có điểm chung trong. Khi đó ta được H H H H 1 2 n S S S S. + Nếu một đa giác H suy biến có H S 0 thì các đỉnh của đa giác cùng nằm trên một đường thẳng. 2. Diện tích tam giác. Cho tam giác ABC có các cạnh là a, b, c và abc p 2 là nửa chu vi. Gọi abc h h h là đường cao tương ứng với các cạnh a, b, c và abc r r r là bán kính đường tròn bàng tiếp ứng với các cạnh a, b, c. Gọi R và r lần lượt là bán kính đường tròn nội tiếp và đường tròn ngoại tiếp ta giác ABC. 3. Diện tích các tứ giác. + Diện tích hình chữ nhật: S a b với a, b là độ dài hai cạnh của hình chữ nhật. + Diện tích hình thang: ha b S 2 với a, b là độ dài hai đáy và h là chiều cao. + Diện tích hình bình hành: a S ah với a và a h là độ dài cạnh và đường cao tương ứng. + Diện tích tứ giác có hai đường chéo vuông góc: 1 2 1 S dd 2 với d d 1 2 là độ dài hai đường chéo. + Diện tích hình thoi: 1 2 1 S ah d d 2 với a và h là độ dài cạnh và đường cao, d1 và d2 là độ dài hai đường chéo. + Diện tích hình vuông: 2 2 1 Sa d 2 với a là độ dài cạnh và d là độ dài đường chéo của hình vuông. 4. Một số tính chất cơ bản về diện tích tam giác. + Nếu hai tam giác có cùng chiều cao thì tỉ số hai đáy tương ứng bằng tỉ số hai diện tích. Ngược lại, nếu hai tam giác có cùng đáy thì tỉ số hai chiều cao tương ứng bằng tỉ số hai diện tích. + Nếu hai tam giác có cùng chung đáy và có cùng diện tích thì đỉnh thứ ba thuộc đường thẳng song song với đáy. + Đường trung bình trong một tam giác chia tam giác đó thành hai phần có diện tích tỉ lệ với 1 : 3. + Đường trung tuyến của một tam giác chia tam giác đó thành hai phần có diện tích bằng nhau. + Ba tam giác có chung đỉnh là trọng tâm của một tam giác còn đáy là ba cạnh thì có diện tích bằng nhau. + Nếu một tam giác và một hình bình hành có cùng đáy và cùng chiều cao thì diện tích tam giác bằng nửa diện tích hình bình hành. + Với mọi tam giác ABC ta luôn có AB AC 2 SABC dấu bằng xẩy ra khi tam giác ABC vuông tại A. + Hai tam giác ABC và A’B’C’ có AA’ hoặc 0 AA’ 180 thì ABC A’B’C’ S AB.AC S A’B’A’C’. Các tính chất nêu trên của tam giác được chứng minh tương đối đơn giản và ta sẽ công nhận chúng khi giải các bài toán về diện tích. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6