Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đạo hàm Toán 11 CTST

Tài liệu gồm 140 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề đạo hàm trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . ĐẠO HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính đạo hàm tại một điểm. + Dạng 2. Đạo hàm của hàm số trên một khoảng. + Dạng 3. Ý nghĩa của đạo hàm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 2 . CÁC QUY TẮC TÍNH ĐẠO HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính đạo hàm. + Dạng 2. Tính đạo hàm cấp hai. + Dạng 3. Gia tốc. + Dạng 4. Viết phương trình tiếp tuyến. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tính đạo hàm tại điểm. + Dạng 2. Tính đạo hàm của một số hàm số thường gặp. + Dạng 3. Bài toán tiếp tuyến. + Dạng 4. Bài toán quãng đường, vận tốc. + Dạng 5. Tính đạo hàm của hàm số mũ. + Dạng 6. Tính đạo hàm của hàm số lôgarit.

Nguồn: toanmath.com

Đăng nhập để đọc

Các dạng toán và bài tập chuyên đề đạo hàm - Nguyễn Trọng
Tài liệu gồm 115 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, các dạng toán và bài tập chuyên đề đạo hàm (có đáp án và lời giải chi tiết), giúp học sinh tham khảo khi học chương trình Đại số và Giải tích 11 chương 5. BÀI 1 . ĐỊNH NGHĨA – QUY TẮC TÍNH ĐẠO HÀM. A. TÓM TẮT LÝ THUYẾT. B. DẠNG TOÁN VÀ BÀI TẬP. + Dạng 1. Tính đạo hàm bằng định nghĩa. + Dạng 2. Các quy tắc tính đạo hàm và bảng đạo hàm. + Dạng 3. Bài toán chứng minh, giải phương trình, bất phương trình. + Dạng 4. Đạo hàm của hàm số lượng giác. + Dạng 5. Chứng minh đẳng thức, giải phương trình chứa đạo hàm. C. BÀI TẬP RÈN LUYỆN. D. LỜI GIẢI BÀI TẬP RÈN LUYỆN. BÀI 2 . PHƯƠNG TRÌNH TIẾP TUYẾN. A. TÓM TẮT LÝ THUYẾT. B. DẠNG TOÁN VÀ BÀI TẬP. + Dạng 1. Viết phương trình tiếp tuyến (PTTT) khi biết tiếp điểm (tại điểm) hoặc biết hoành độ, tung độ. + Dạng 2. Viết phương trình tiếp tuyến (PTTT) khi biết hệ số góc hoặc song song, vuông góc với một đường thẳng. + Dạng 3. Bài toán về xác định hệ số góc nhỏ nhất, lớn nhất của tiếp tuyến. + Dạng 4. Viết phương trình tiếp tuyến (PTTT) khi biết điểm mà tiếp tuyến đi qua. + Dạng 5. Tìm tham số để từ một điểm ta kẻ được đúng một tiếp tuyến đến đồ thị hàm số. + Tổng hợp kiến thức cần nhớ về tiếp tuyến. C. BÀI TẬP RÈN LUYỆN. D. LỜI GIẢI BÀI TẬP RÈN LUYỆN. BÀI 3 . ĐẠO HÀM CẤP CAO VÀ VI PHÂN. A. TÓM TẮT LÝ THUYẾT. B. DẠNG TOÁN VÀ BÀI TẬP. + Dạng 1. Tính đạo hàm cấp cao của một hàm số. + Dạng 2. Tìm vi phân của một hàm số. BÀI 4 . ÔN TẬP ĐẠI SỐ VÀ GIẢI TÍCH 11 CHƯƠNG 5: ĐẠO HÀM.
Hướng dẫn giải các dạng toán đạo hàm
Tài liệu gồm 63 trang, hướng dẫn giải các dạng toán đạo hàm trong chương trình Đại số và Giải tích 11 chương 5. BÀI 1 . ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM. + Dạng 1.1. Tính đạo hàm của hàm số bằng định nghĩa. + Dạng 1.2. Ý nghĩa của đạo hàm vào một số bài toán. + Dạng 1.3. Viết phương trình tiếp tuyến của đồ thị hàm số. + Dạng 1.4. Mối quan hệ giữa tính liên tục và đạo hàm của hàm số. BÀI 2 . QUY TẮC TÍNH ĐẠO HÀM. + Dạng 2.1. Tính đạo hàm của hàm số chứa đa thức, chứa căn thức. + Dạng 2.2. Một số ứng dụng của đạo hàm. BÀI 3 . ĐẠO HÀM CỦA CÁC HÀM SỐ LƯỢNG GIÁC. + Dạng 3.1. Tính đạo hàm của các hàm số lượng giác. + Dạng 3.2. Chứng minh đẳng thức hoặc giải phương trình. + Dạng 3.3. Tính giới hạn của hàm số có chứa biểu thức lượng giác. BÀI 4 . ĐẠO HÀM CẤP HAI. + Dạng 4.1. Tính đạo hàm cấp hai – Ý nghĩa của đạo hàm cấp hai. + Dạng 4.2. Chứng minh đẳng thức chứa đạo hàm cấp 2. + Dạng 4.3. Vận dụng đạo hàm cấp hai chứng minh đẳng thức tổ hợp. BÀI 5 . ĐỀ KIỂM TRA CHƯƠNG 5.
200 câu vận dụng cao đạo hàm ôn thi THPT môn Toán
Tài liệu gồm 20 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 200 câu vận dụng cao (VDC) đạo hàm có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 200 câu vận dụng cao đạo hàm ôn thi THPT môn Toán: + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng (d): y = −2x + m − 1 (m là tham số thực). Gọi k1, k2 là hệ số góc của tiếp tuyến tại giao điểm của (d) và (C). Khi đó k1 · k2 bằng? + Cho hàm số y = 2x/(x + 2) có đồ thị (C). Gọi M(xM; yM), N(xN ; yN ) (xN < 0) là các điểm trên đồ thị (C) sao cho tiếp tuyến với (C) tại M, N song song với nhau, đồng thời khoảng cách giữa hai tiếp tuyến này là lớn nhất. Tính x2N + x2M. + Cho hàm số y = f(x) khác hàm hằng, xác định trên R, có đạo hàm tại mọi điểm thuộc R và đạo hàm xác định trên R. Xét 4 mệnh đề sau: (I) Số nghiệm của phương trình f0 (x) = 0 luôn bé hơn số nghiệm của phương trình f(x) = 0. (II) Nếu y = f(x) là hàm số chẵn thì y = f0(x) là hàm số lẻ. (III) Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x0 có hệ số góc k = f0(x0). (IV) Nếu f0(x1) = f0(x2) và x1 6= x2 thì tiếp tuyến của đồ thị hàm số y = f(x) tại các điểm có hoành độ x1, x2 song song với nhau. Số mệnh đề đúng là?
50 bài toán thực tế liên quan đạo hàm - tích phân có lời giải
Tài liệu gồm 54 trang, tuyển chọn 50 bài toán thực tế liên quan đạo hàm – tích phân thường gặp trong đề thi thử THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu 50 bài toán thực tế liên quan đạo hàm – tích phân có lời giải: + Một con kiến đậu ở đầu B của một thanh cứng mảnh AB có chiều dài L đang dựng cạnh một bức tường thẳng đứng (hình vẽ). Vào thời điểm mà đầu B bắt đầu chuyển động sang phải theo sàn ngang với vận tốc không đổi v thì con kiến bắt đầu bò dọc theo thanh với vận tốc không đổi u đối với thanh. Trong quá trình bò trên thanh, con kiến đạt được độ cao cực đại max h là bao nhiêu đối với sàn? Cho đầu A của thanh luôn tỳ lên tường thẳng đứng. + Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. + Một điểm C trên hòn đảo có khoảng cách ngắn nhất đến bờ biển là 60 km, B là điểm trên bờ biển sao cho CB vuông góc với bờ biển. Khoảng cách từ A trên bờ biển đến B là 100 km. Để tham dự buổi họp nhóm Strong Team Toán VD – VCD ngày 28/6/2019, thầy Quý phải tính toán vị trí diễn ra cuộc họp tại địa điểm G trên đoạn AB để tổng chi phí đi lại của cả hai nhóm các thầy cô là ít nhất. Biết nhóm của thầy Quý đi từ C theo đường biển chi phí đi là 500 nghìn mỗi km, nhóm cô Thêm đi từ vị trí A đi trên đất liền mỗi km chi phí là 300 nghìn. Hỏi thầy tìm được vị trí điểm G cách B bao xa?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6