Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng xác suất của biến cố

Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề xác suất của biến cố, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2: Tổ Hợp Và Xác Suất. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Hiểu được khái niệm biến cố và phân biệt được các biến cố giao, biến cố hợp, biến cố đối và biến cố độc lập. + HIểu được định nghĩa xác suất của biến cố và tính chất của xác suất. + Nắm vững công thức cộng xác suất và công thức nhân xác suất. Kĩ năng: + Tính được xác suất của biến cố trong các bài toán xác suất cổ điển. + Vận dụng quy tắc tính xác suất trong các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Sử dụng định nghĩa cổ điển về xác suất. + Dạng 2: Các bài tập sử dụng quy tắc tính xác suất. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đăng nhập để đọc

160 câu vận dụng cao tổ hợp - xác suất ôn thi THPT môn Toán
Tài liệu gồm 79 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) tổ hợp – xác suất có đáp án và lời giải chi tiết, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao tổ hợp – xác suất ôn thi THPT môn Toán: + Cho tập hợp A = {1; 2; 3; 4; . . . ; 100}. Gọi S là tập hợp gồm tất cả các tập con của A, mỗi tập con này gồm 3 phần tử của A và có tổng bằng 91. Chọn ngẫu nhiên một phần tử của S. Xác suất chọn được phần tử có ba số lập thành một cấp số nhân bằng? + Có 10 học sinh lớp A, 8 học sinh lớp B được xếp ngẫu nhiên vào một bản tròn (hai cách xếp được coi là giống nhau nếu cách xếp này là kết quả của cách xếp kia khi ta thực hiện phép quay bàn ở tâm một góc nào đó). Tính xác suất để không có hai học sinh bất kì nào của lớp B đứng cạnh nhau. [ads] + Trong kỳ thi tốt nghiệp THPT năm học 2019 – 2020, mỗi phòng thi gồm 24 thí sinh xếp vào 24 chiếc bàn khác nhau. Bạn An là một thí sinh dự thi 4 môn (Toán, Văn, Ngoại Ngữ, Khoa học tự nhiên), cả 4 lần thi đều thi tại 1 phòng thi duy nhất. Giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên. Tính xác suất để trong 4 lần thi An có đúng 2 lần ngồi vào cùng 1 vị trí.
Tổng ôn tập TN THPT 2020 môn Toán Tổ hợp và xác suất
Tài liệu gồm 32 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: Tổ hợp và xác suất; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Tổ hợp và xác suất: I. KIẾN THỨC CẦN NẮM 1. Quy tắc đếm. + Quy tắc cộng. + Quy tắc nhân. 2. Hoán vị – Chỉnh hợp – Tổ hợp. + Định nghĩa hoán vị và số các hoán vị. + Định nghĩa chỉnh hợp và số các chỉnh hợp. + Định nghĩa tổ hợp và số các tổ hợp. [ads] 3. Tính xác xuất. Tính xác suất bằng định nghĩa. Tính xác suất bằng công thức: + Quy tắc cộng xác suất. + Công thức tính xác suất biến cố đối. + Quy tắc nhân xác suất. II. BÀI TẬP CÙNG MỨC ĐỘ ĐỀ MINH HỌA THPT
Chuyên đề tổ hợp và xác suất
Tài liệu gồm 215 trang phân dạng và hướng dẫn giải các dạng toán tổ hợp và xác suất trong chương trình Đại số và Giải tích 11 chương 1. Khái quát nội dung chuyên đề tổ hợp và xác suất: 1 TỔNG QUAN KIẾN THỨC TỔ HỢP – XÁC SUẤT 1 Các quy tắc đếm. A Bài tập mẫu. B Bài tập mẫu. 2 Chỉnh hợp. A Bài tập mẫu. 3 Hoán vị. A Bài tập mẫu. 4 Tổ hợp. A Tóm tắt lí thuyết. B Bài tập mẫu. C Bài tập rèn luyện. 2 CÁC DẠNG TOÁN TỔ HỢP Dạng 0.1. Rút gọn một biểu thức chứa chỉnh hợp – hoán vị – tổ hợp. Dạng 0.2. Giải phương trình liên quan đến chỉnh hợp – tổ hợp – hoán vị. Dạng 0.3. Giải bất phương trình liên quan đến chỉnh hợp – hoán vị – tổ hợp. Dạng 0.4. Giải hệ phương trình chỉnh hợp – hoán vị – tổ hợp. Dạng 0.5. Chứng minh một đẳng thức tổ hợp. Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 2). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 3). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 4). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 5 – dùng đạo hàm). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 6 – dùng tích phân). Dạng 0.6. Tính tổng một biểu thức tổ hợp. Dạng 0.7. Tìm hệ số của một số hạng hoặc tìm một số hạng (không có giả thiết). Dạng 0.8. Tìm hệ số của một số hạng hoặc tìm một số hạng (có giả thiết). Dạng 0.9. Chứng minh bất đẳng thức tổ hợp. [ads] 3 CÁC DẠNG TOÁN LÝ LUẬN Dạng 0.10. Đếm số dùng quy tắc nhân và quy tắc cộng. Dạng 0.11. Bài toán đếm số – Dùng chỉnh hợp. Dạng 0.12. Bài toán sắp xếp đồ vật. Dạng 0.13. Bài toán sắp xếp người. Dạng 0.14. Bài toán chọn vật, dùng tổ hợp. Dạng 0.15. Bài toán chọn về người – Dùng tổ hợp. Dạng 0.16. Bài toán chọn về người – Dùng tổ hợp. Dạng 0.17. Bài toán phân chia tập hợp – dùng tổ hợp. Dạng 0.18. Đếm số điểm, số đoạn thẳng, số góc, số đa giác, số miền. 1 Bộ đề số 1. 2 Bộ đề số 2. 3 Bộ đề số 3. 4 Bộ đề số 4. 5 Bộ đề số 5. 4 CÁC BÀI TOÁN XÁC SUẤT THI HỌC SINH GIỎI Dạng 0.1. Bài toán chia hết. Dạng 0.2. Số lần xuất hiện của chữ số. Dạng 0.3. Liên quan đến vị trí. Dạng 0.4. Các bài toán đếm số phương án, tính xác suất liên quan người, đồ vật. Dạng 0.5. Các bài toán đếm số phương án. Tính xác suất liên quan đến đa giác. Dạng 0.6. Các bài toán đếm, sắp xếp liên quan đến vị trí, xếp chỗ.
Các dạng toán biến cố và xác suất của biến cố thường gặp
Tài liệu gồm 57 trang được biên soạn bởi thầy giáo Nguyễn Bảo Vương tuyển tập 175 câu hỏi và bài toán trắc nghiệm biến cố và xác suất của biến cố thường gặp trong đề thi Trung học Phổ thông Quốc gia môn Toán, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được phân chia thành các dạng bài riêng biệt tùy thuộc vào đặc điểm và phương pháp giải bài toán đó, tài liệu giúp học sinh học tốt chủ đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2) và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán sắp tới. Mục lục tài liệu các dạng toán biến cố và xác suất của biến cố thường gặp: Phần A . Câu hỏi Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 3). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 3). A. Một số bài toán chọn vật, chọn người (Trang 3). B. Một số bài toán liên quan đến chữ số (Trang 8). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 11). D. Một số bài toán liên quan đến xúc sắc (Trang 12). E. Một số bài toán liên quan đến hình học (Trang 13). F. Một số bài toán đề thi (Trang 15). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 15). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 18). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 18). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 19). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 20). [ads] Phần B . Lời giải tham khảo Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 23). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 23). A. Một số bài toán chọn vật, chọn người (Trang 23). B. Một số bài toán liên quan đến chữ số (Trang 30). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 36). D. Một số bài toán liên quan đến xúc sắc (Trang 38). E. Một số bài toán liên quan đến hình học (Trang 40). F. Một số bài toán đề thi (Trang 43). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 44). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 49). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 49). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 51). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 53).

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6