Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Bắc Ninh

Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Bắc Ninh Bản PDF Sáng thứ Năm ngày 28 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh mã đề 898 gồm có 06 trang, đề có 50 câu trắc nghiệm, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh : + Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu có phương trình là x^2 + y^2 + z^2 = 1; (x – 2)^2 + (y – 1)^2 + (z + 2)^2 = 4 và (x + 4)^2 + y^2 + (z – 3)^2 = 16. Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y, Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu sao cho MX = MY = MZ. Khi đó tập hợp các điểm M là đường thẳng d cố định. Hỏi d vuông góc với mặt phẳng nào? [ads] + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2020. Gọi (a) là mặt phẳng thay đổi vuông góc với AC và luôn có điểm chung với tất cả các mặt của hình lập phương. Gọi S, L lần lượt là diện tích và chu vi của thiết diện tạo bởi (a) với hình lập phương. Khẳng định nào sau đây đúng? A. S thay đổi, L không đổi. B. S không đổi, L không đổi. C. S thay đổi, L thay đổi. D. S không đổi, L thay đổi. + Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0; 0; 0) trùng với O, B(2; 0; 0), D(0; 3; 0), A'(0; 0; 3). Gọi (H) là tập tất cả các điểm M(x; y; z) với x, y, z nguyên, nằm trên hoặc trong hình hộp chữ nhật. Chọn ngẫu nhiên hai điểm E, F phân biệt thuộc (H). Xác suất để trung điểm I của EF cũng nằm trong (H) bằng?

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi học sinh giỏi môn Toán 12 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề thi học sinh giỏi môn Toán 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG Toán 12 dự thi Quốc gia năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi thành lập đội tuyển HSG Toán 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6