Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2022 2023 trường THPT chuyên Bến Tre
Nội dung Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2022 2023 trường THPT chuyên Bến Tre Bản PDF -
Nội dung bài viết Đề thi chọn đội tuyển HSG Toán lớp 10 năm 2022 - 2023 trường THPT chuyên Bến Tre Đề thi chọn đội tuyển HSG Toán lớp 10 năm 2022 - 2023 trường THPT chuyên Bến Tre
Xin chào quý thầy cô và các em học sinh lớp 10! Trong kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2022 - 2023 của trường THPT chuyên Bến Tre, chúng ta sẽ gặp phải những bài toán thú vị và thách thức. Hãy cùng nhau khám phá những câu hỏi hấp dẫn dưới đây: Có bao nhiêu cách sắp xếp 6 nữ và 16 nam để nhảy múa theo vòng tròn sao cho có ít nhất 2 người nam đứng giữa 2 người nữ bất kỳ? Tìm tất cả các hàm số $f: \mathbb{R} \to \mathbb{R}$ thỏa mãn $f(xy + f(x)) = xf(y)$ với mọi $x,y \in \mathbb{R}$. Chứng minh rằng nếu $p$ và $q$ là hai số nguyên tố phân biệt, thì $p^{q - 1} + q^{p - 1}$ chia hết cho $p \cdot q$. Cho $p$ là số nguyên tố khác 2 và $a, b$ là hai số tự nhiên lẻ sao cho $a + b$ chia hết cho $p$ và $a - b$ chia hết cho $p - 1$. Chứng minh rằng $a^b + b^a$ chia hết cho $2p$. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. Gọi $D, E, F$ lần lượt là các giao điểm của các tia $AM, BM, CM$ với các cạnh $BC, CA, AB$. Gọi $K$ là giao điểm của $DE$ và $CM$, $H$ là giao điểm của $DF$ và $BM$. Chứng minh rằng các đường thẳng $AD, BK, CH$ đồng quy.
Hãy cùng nhau tham gia và thử thách phản xạ, sự sáng tạo và kiến thức Toán của mình trong kỳ thi sắp tới!