Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề những hằng đẳng thức đáng nhớ

Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề những hằng đẳng thức đáng nhớ, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Bình phương của một tổng. 2. Bình phương của một hiệu. 3. Hiệu hai bình phương. 4. Lập phương của một tổng. 5. Lập phương của một hiệu. 6. Tổng hai lập phương. 7. Hiệu hai lập phương. Hệ quả : 1. Tổng hai bình phương. 2. Tổng hai lập phương. 3. Bình phương của tổng ba số hạng. 4. Lập phương của tổng ba số hạng. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN Dạng 1 : Biến đổi biểu thức. Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức. Dạng 2 : Tính giá trị biểu thức. Dạng bài toán này rất đa dạng ta có thể giải theo phương pháp cơ bản như sau: + Biến đổi biểu thức cho trước thành những biểu thức cần thiết sao cho phù hợp với biểu thức cần tính giá trị. + Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức cần tính giá trị về biểu thức có liên quan đến giá trị đề bài đã cho. + Thay vào biểu thức cần tính tìm được giá trị. Dạng 3 : Tìm giá trị lớn nhất, giá trị nhỏ nhất. + Giá trị lớn nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: m – Q2(x) =< m (với m là hằng số), suy ra GTLN của A(x) là m. + Giá trị nhỏ nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: n + Q2(x) >= n (với n là hằng số), suy ra GTNN của A(x) là n. C. CÁC DẠNG BÀI TẬP MINH HỌA NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề phép nhân và phép chia các đa thức
Nhằm giúp bồi dưỡng năng lực học tập chương trình Toán lớp 8 chương 1, THCS. giới thiệu đến các em học sinh tài liệu chuyên đề phép nhân và phép chia các đa thức. Tài liệu gồm 44 trang bao gồm kiến thức cơ bản, hướng dẫn mẫu và bài tập tự luận các chủ đề: 1. Nhân đơn thức với đa thức : Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích của chúng lại với nhau. 2. Nhân đa thức với đa thức : Muốn nhân một đathức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. 3. Những hằng đẳng thức đáng nhớ : Bình phương của một tổng, Bình phương của một hiệu, Hiệu hai bình phương. 4. Những hằng đẳng thức đáng nhớ : Lập phương của một tổng, Lập phương của một hiệu. 5. Những hằng đẳng thức đáng nhớ : Tổng hai lập phương, Hiệu hai lập phương. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung . + Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức. + Phương pháp đặt nhân tử chung là một phương pháp để phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử có chung nhân tử. [ads] 7. Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức : Ta có thể sử dụng các hằng đẳng thức đáng nhớ theo chiều biến đổi từ một vế là một đa thức sang vế kia là một tích của các nhân tử hoặc lũy thừa của một đơn thức đơn giản hơn. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử : Khi sử dụng phương pháp nhóm hạng tử để phân tích đa thức thành nhân tử, ta cần nhận xét đặc điểm của các hạng tử, nhóm các hạng tử một cách thích hợp nhằm làm xuất hiện dạng hằng đẳng thức hoặc xuất hiện nhân tử chung của các nhóm. Phân tích đa thức thành nhân tử (nâng cao). 9. Phân tích đa thức thành nhân tử phối hợp nhiều phương pháp : Nhiều khi phải phối hợp nhiều phương pháp để phân tích đa thức thành nhân tử. Thông thường, ta xem xét đến phương pháp nhân tử chung trước tiên, tiếp đó ta xét xem có thể sử dụng được các hằng đẳng thức đã học hay không? Có thể nhóm hoặc tách hạng tử, thêm và bớt cùng một hạng tử hay không? 10. Chia đơn thức cho đơn thức . Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A. Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau: + Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Nhân các kết quả vừa tìm được với nhau. 11. Chia đa thức cho đơn thức : Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B) ta chia mỗi hạng tử của A cho B rồi cộng các kết quả lại với nhau. 12. Chia đa thức một biến đã sắp xếp . Phép chia hai đa thức đã sắp xếp được thực hiện tương tự như phép chia hai số tự nhiên: + Chia hạng tử bậc cao nhất của đa thức bị chia cho hạng tử bậc cao nhất của đa thức chia, được hạng tử cao nhất của thương. + Chia hạng tử bậc cao nhất của dư thứ nhất cho hạng tử bậc cao nhất của đa thức chia, được hạng tử thứ hai của thương. + Quá trình trên diễn ra liên tục đến khi được dư cuối cùng bằng 0 (phép chia hết) hoặc dư cuối cùng khác 0 có bậc thấp hơn bậc của đa thức chia (phép chia có dư). Đề kiểm tra chương I – Đại số 8.
Đề cương Toán 8 HK2 năm 2018 - 2019 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương Toán 8 HK2 năm 2018 – 2019 trường THCS Nguyễn Trường Tộ – Hà Nội, đề cương tuyển chọn các bài toán điển hình thuộc 06 dạng toán: bài toán phân thức tổng hợp, giải phương trình, giải bài toán bằng cách lập phương trình, giải bất phương trình, tam giác đồng dạng, bất đẳng thức … nhằm giúp học sinh khối 8 ôn tập để chuẩn bị cho kỳ thi học kỳ 2 Toán 8 năm học 2018 – 2019. Các bài toán trong đề cương đều được phân tích và giải chi tiết bởi tập thể quý thầy, cô giáo nhóm Toán THCS. Trích dẫn nội dung đề cương Toán 8 HK2 năm 2018 – 2019 trường THCS Nguyễn Trường Tộ – Hà Nội : + Trong tháng Giêng hai tổ công nhân may đươc 800 cái áo. Tháng Hai, tổ một vượt mức 15%, tổ hai vượt mức 20%, do đó cả hai tổ sản xuất được 945 cái áo. Tính xem trong tháng đầu mỗi tổ may được bao nhiêu cái áo? [ads] + Cho tam giác ABC vuông tại A có AB = 36cm, AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E. a) Chứng minh tam giác ABC đồng dạng với tam giác MDC. b) Tính các cạnh của tam giác MDC. c) Tính độ dài cạnh EC. d) Tính tỉ số diện tích của hai tam giác MDC và ABC. + Giải các bất phương trình và biểu diễn tập nghiệm trên trục số.
Đề cương ôn tập Toán 8 HK2 năm 2018 - 2019 phòng GDĐT Cầu Giấy - Hà Nội
THCS. giới thiệu đến bạn đọc đề cương ôn tập Toán 8 HK2 năm 2018 – 2019 phòng GD&ĐT Cầu Giấy – Hà Nội, đề cương gồm 06 trang tuyển chọn các bài toán điển hình thuộc các chủ đề chương trình Toán 8 mà học sinh cần ôn tập để chuẩn bị cho kỳ thi học kỳ 2 Toán 8 năm học 2018 – 2019, các chủ đề đó gồm có: + DẠNG 1: BIỂU THỨC ĐẠI SỐ. + DẠNG 2. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. + DẠNG 3. PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH. + DẠNG 4. HÌNH HỌC. + DẠNG 5. CÁC BÀI TOÁN KHÁC. [ads] Trích dẫn nội dung đề cương ôn tập Toán 8 HK2 năm 2018 – 2019 phòng GD&ĐT Cầu Giấy – Hà Nội : + Một tổ dự định mỗi giờ dệt 28m vải. Nhưng thực tế mỗi giờ, tổ đó đã dệt ít hơn 4m vải. Do vậy, tổ đã làm quá thời gian dự định 2h mà còn thiếu 5m vải nữa mới hoàn thành kế hoạch. Tính số vải tổ đó phải hoàn thành theo kế hoạch. + Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 6cm. Phân giác của góc B cắt AC tại M, phân giác của góc C cắt AB tại N. a) Tính AM, MC. b) Tính MN. c) Tính tỉ số diện tích của tam giác AMN và tam giác ABC. d) Tính diện tích tam giác BMN. + Chứng minh với mọi x phương trình |x + 1| + |2 – x| = -4x^2 + 12x – 10 vô nghiệm.
Bài giảng Toán 8
THCS. giới thiệu đến bạn đọc tài liệu bài giảng Toán 8, bao gồm cả Đại số 8 và Hình học 8, tài liệu phân dạng chi tiết và tuyển chọn các bài tập thuộc chương trình Đại số 8 và Hình học 8. PHẦN ĐẠI SỐ LỚP 8 CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC Chủ đề 1 . NHÂN ĐƠN THỨC VỚI ĐA THỨC – NHÂN ĐA THỨC VỚI ĐA THỨC Dạng 1. Làm tính nhân. Dạng 2. Rút gọn biểu thức và tính giá trị của biểu thức. Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào giá trị các biến. Dạng 4. Chứng minh đẳng thức. Dạng 5. Tìm giá trị của x thỏa mãn đẳng thức cho trước. Chủ đề 2 . NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ Dạng 1. Vận dụng các hằng đẳng thức để tính. Dạng 2. Rút gọn biểu thức và tính giá trị của biểu thức. Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào các biến. Dạng 4. Chứng minh đẳng thức. Dạng 5. Tìm x thỏa mãn đẳng thức. Dạng 6. Chứng minh chia hết. Dạng 7. Chứng minh giá trị của một biểu thức luôn luôn dương (hay âm) với mọi giá trị của biến. Dạng 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức. Chủ đề 3 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. Dạng 2. Tính giá trị của một biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 4 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. Dạng 2. Tính giá trị của biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 5 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM CÁC HẠNG TỬ Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử. Dạng 2. Tính giá trị của biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 6 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG CÁCH PHỐI HỢP NHIỀU PHƯƠNG PHÁP Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp tách các hạng tử. Dạng 2. Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt cùng một hạng tử. Dạng 3. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. Dạng 4. Tính giá trị của một biểu thức. Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. Dạng 6. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 7 . CHIA ĐƠN THỨC CHO ĐƠN THỨC. CHIA ĐA THỨC CHO ĐƠN THỨC Dạng 1. Làm tính chia đơn thức hoặc đa thức cho đơn thức. Dạng 2. Tìm điều kiện để đơn thức hoặc đa thức chia hết cho một đơn thức. Dạng 3. Tính giá trị của biểu thức. Chủ đề 8 . CHIA ĐA THỨC MỘT BIẾN ĐÃ SẮP XẾP Dạng 1. Chia đa thức cho đa thức. Dạng 2. Tính giá trị của biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Xác định hệ số của một đa thức để đa thức này chia hết cho một đa thức khác. Dạng 5. Tìm số nguyên x để giá trị của đa thức A(x) chia hết cho giá trị của đa thức B(x). CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ Chủ đề 1 . PHÂN THỨC ĐẠI SỐ – TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC Dạng 1. Chứng minh hai phân thức bằng nhau. Dạng 2. Tìm đa thức trong đẳng thức. Dạng 3. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức. Chủ đề 2 . RÚT GỌN PHÂN THỨC – QUY ĐỒNG MẪU THỨC NHIỀU PHÂN THỨC Dạng 1. Rút gọn phân thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Tính giá trị biểu thức. Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. Dạng 6. Quy đồng mẫu thức. Chủ đề 3 . PHÉP CỘNG CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Cộng trừ các phân thức cùng mẫu thức. Dạng 2. Cộng các phân thức không cùng mẫu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh đẳng thức. Chủ đề 4 . PHÉP TRỪ CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Trừ các phân thức cùng mẫu thức. Dạng 2. Trừ các phân thức không cùng mẫu thức. Dạng 3. Rút gọn và tính giá trị biểu thức. Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. Chủ đề 5 . PHÉP NHÂN CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Thực hiện phép nhân các phân thức. Dạng 2. Rút gọn biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. Chủ đề 6 . PHÉP CHIA CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Chủ đề 7 . BIẾN ĐỔI CÁC BIỂU THỨC HỮU TỈ. GIÁ TRỊ CỦA PHÂN THỨC Dạng 1. Tìm điều kiện của biến để phân thức xác định. Dạng 2. Tìm giá trị của x để phân thức bằng 0. Dạng 3. Rút gọn biểu thức. CHƯƠNG 3 . PHÉP NHÂN VÀ CHIA CÁC ĐA THỨC Chủ đề 1 . MỞ ĐẦU VỀ PHƯƠNG TRÌNH PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN SỐ Dạng 1. Xét xem giá trị x = a có là nghiệm của phương trình không? Dạng 2. Xét xem hai phương trình có tương đương không? Dạng 3. Nhận dạng phương trình bậc nhất một ẩn số. Dạng 4. Giải phương trình bậc nhất một ẩn. Chủ đề 2 . PHƯƠNG TRÌNH ĐƯA ĐƯỢC VỀ DẠNG AX + B = 0 Dạng 1. Giải phương trình. Dạng 2. Tìm giá trị của biến để giá trị của hai biểu thức có mối liên quan nào đó. Dạng 3. Tìm giá trị của tham số m để phương trình có nghiệm x = x0. Chủ đề 3 . PHƯƠNG TRÌNH TÍCH Dạng 1. Giải các phương trình tích. Dạng 2. Giải phương trình đưa về phương trình tích. Dạng 3. Biết phương trình có một trong các nghiệm là x = x0, tìm giá trị của tham số m. Chủ đề 4 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU Dạng 1. Tìm điều kiện xác định của một phương trình. Dạng 2. Giải phương trình chứa ẩn ở mẫu. Dạng 3. Tìm giá trị của biến để giá trị của hai biểu thức có mối liên quan nào đó. Dạng 4. Biết phương trình tham số m có một trong các nghiệm là x = x0, tìm nghệm còn lại. Chủ đề 5 . GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH Dạng 1. Toán về quan hệ giữa các số. Dạng 2. Toán chuyển động. Dạng 3. Toán công việc liên quan đến năng suất và thời gian. Dạng 4. Toán về công việc làm chung, làm riêng. Chủ đề 6 . ÔN TẬP CHƯƠNG III Dạng 1. Giải phương trình. Dạng 2. Tìm giá trị của biến để giá trị của hai biểu thức có mối liên quan nào đó. Dạng 3. Biết phương trình tham số m có một nghiệm là x = x0, tìm các nghiệm còn lại. Dạng 4. Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Chủ đề 1 . LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN Dạng 1. Xác định tính đúng sai của một bất đẳng thức. Dạng 2. So sánh hai số. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Áp dụng bất đẳng thức để tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức. Chủ đề 2 . BẤT PHƯƠNG TRÌNH MỘT ẨN – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Dạng 1. Kiểm tra giá trị x = a có phải là nghiệm của bất phương trình không? Dạng 2. Biểu diễn tập nghiệm của bất phương trình trên trục số. Dạng 3. Lập bất phương trình của bài toán. Dạng 4. Giải thích sự tương đương của hai bất phương trình. Dạng 5. Giải bất phương trình. Chủ đề 3 . PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI Dạng 1. Giải phương trình |A(x)| = k với k là hằng số (k > 0). Dạng 2. Giải phương trình |A(x)| = |B(x)|. Dạng 3. Giải phương trình |A(x)| = B(x). Chủ đề 4 . ÔN TẬP CHƯƠNG IV Dạng 1. Chứng minh bất đẳng thức. Dạng 2. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức f(x). Dạng 3. Giải bất phương trình. Dạng 4. Giải phương trình chứa dấu giá trị tuyệt đối. [ads] PHẦN HÌNH HỌC LỚP 8 CHƯƠNG 1 . TỨ GIÁC Chủ đề 1 . TỨ GIÁC Dạng 1. Nhận dạng tứ giác. Dạng 2. Tính số đo góc. Dạng 3. Vẽ tứ giác biết 5 yếu tố. Dạng 4. Chứng minh hệ thức giữa các độ dài, tính độ dài. Chủ đề 2 . HÌNH THANG. HÌNH THANG CÂN Dạng 1. Tính số đo góc. Dạng 2. Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Dạng 3. Nhận biết hình thang, hình thang cân. Dạng 4. Tính độ dài đoạn thẳng. Chủ đề 3 . ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG Dạng 1. Tính độ dài đoạn thẳng và chứng minh các quan hệ về độ dài. Dạng 2. Chứng minh hai đường thẳng song song. Chứng minh ba điểm thẳng hàng. Chủ đề 4 . DỰNG HÌNH BẰNG THƯỚC VÀ COMPA – DỰNG HÌNH THANG Dạng 1. Dựng tứ giác. Dạng 2. Dựng hình thang. Dạng 3. Dựng tam giác (trừ những trường hợp cơ bản đã biết cách dựng). Chủ đề 5 . ĐỐI XỨNG TRỤC Dạng 1. Vẽ hình đối xứng của một hình cho trước. Dạng 2. Tìm hình có trục đối xứng – tìm trục đối xứng của một hình. Dạng 3. Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Dạng 4. Chứng minh hai điểm đối xứng qua một đường thẳng. Dạng 5. Tìm vị trí của một điểm để tổng hai đoạn thẳng ngắn nhất. Chủ đề 6 . HÌNH BÌNH HÀNH Dạng 1. Chứng minh hai góc bằng nhau. tính số đo góc. Dạng 2. Chứng minh hai đoạn thẳng bằng nhau, các quan hệ về độ dài. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng quy. Dạng 4. Chứng minh tứ giác là hình bình hành. Chủ đề 7 . ĐỐI XỨNG TÂM Dạng 1. Vẽ hình đối xứng của một hình cho trước. Dạng 2. Tìm hình có tâm đối xứng. Tìm tâm đối xứng của một hình. Dạng 3. Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau. Dạng 4. Chứng minh hai điểm đối xứng qua một điểm. Chủ đề 8 . HÌNH CHỮ NHẬT Dạng 1. Chứng minh một tứ giác là hình chữ nhật. Dạng 2. Tìm điều kiện của hình A để hình B trở thành hình chữ nhật. Dạng 3. Chứng minh quan hệ bằng nhau giữa các đoạn thẳng, giữa các góc. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4. Chứng minh quan hệ vuông góc. Chủ đề 9 . ĐƯỜNG THẲNG SONG SONG VỚI MỘT ĐƯỜNG THẲNG CHO TRƯỚC Dạng 1. Chứng tỏ một điểm di động trên một đường thẳng song song với một đường thẳng cho trước. Dạng 2. Chứng minh các đường thẳng song song cách đều. Dạng 3. Chia đoạn thẳng AB cho trước làm nhiều phần bằng nhau. Chủ đề 10 . HÌNH THOI Dạng 1. Chứng minh một tứ giác là hình thoi. Dạng 2. Tìm điều kiện của hình A để hình B trở thành hình thoi. Dạng 3. Chứng minh quan hệ bằng nhau giữa các đoạn thẳng, giữa các góc. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4. Chứng minh quan hệ vuông góc. Chủ đề 11 . HÌNH VUÔNG Dạng 1. Chứng minh một tứ giác là hình vuông. Dạng 2. Tìm điều kiện của hình A để hình B trở thành hình vuông. Dạng 3. Chứng minh quan hệ bằng nhau giữa các đoạn thẳng, giữa các góc. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4. Chứng minh quan hệ vuông góc. Chủ đề 12 . ÔN TẬP CHƯƠNG I Dạng 1. Nhận biết tứ giác đặc biệt và tìm điều kiện để một tứ giác trở thành một tứ giác đặc biệt hơn. Dạng 2. Chứng minh hai các đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 3. Chứng minh hai đường thẳng song song hoặc vuông góc. Dạng 4. Tìm xem một điểm di động trên đường thẳng nào. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC Chủ đề 1 . ĐA GIÁC. ĐA GIÁC ĐỀU Dạng 1. Tính góc của đa giác. Dạng 2. Tính đường chéo của đa giác. Dạng 3. Tính góc của đa giác đều. Chủ đề 2 . DIỆN TÍCH HÌNH CHỮ NHẬT. DIỆN TÍCH TAM GIÁC Dạng 1. Cắt ghép hình. Dạng 2. Tính diện tích hình chữ nhật, tam giác. Dạng 3. Chứng minh về diện tích. Dạng 4. Tính độ dài đoạn thẳng bằng công thức diện tích. Dạng 5. Sử dụng diện tích để chứng minh. Dạng 6. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. Dạng 7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của diện tích một hình. Chủ đề 3 . DIỆN TÍCH HÌNH THANG. DIỆN TÍCH HÌNH THOI Dạng 1. Tính diện tích hình thang, hình bình hành, hình thoi. Dạng 2. Chứng minh đẳng thức diện tích. Dạng 3. Tính toán và chứng minh đẳng thức diện tích. Chủ đề 4 . DIỆN TÍCH ĐA GIÁC Dạng 1. Tính diện tích đa giác. Dạng 2. Cắt ghép hình có diện tích bằng diện tích hình đã cho. Dạng 3. Chứng minh bất đẳng thức diện tích. Chủ đề 5 . ÔN TẬP CHƯƠNG II Dạng 1. Tính số cạnh và số đo của đa giác. Dạng 2. Tính diện tích đa giác. Dạng 3. Chứng minh về diện tích đa giác. Dạng 4. Sử dụng diện tích đa giác để giải toán. CHƯƠNG 3 . TAM GIÁC ĐỒNG DẠNG Chủ đề 1 . ĐỊNH LÍ TA-LÉT TRONG TAM GIÁC Dạng 1. Tìm tỉ số của các đoạn thẳng. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh các hệ thức. Chủ đề 2 . ĐỊNH LÍ ĐẢO VÀ HỆ QUẢ CỦA ĐỊNH LÍ TA-LÉT Dạng 1. Sử dụng hệ quả của định lí Ta-lét để tính độ dài đoạn thẳng. Dạng 2. Sử dụng hệ quả của định lí Ta-lét để chứng minh các hệ thức. Dạng 3. Chứng minh hai đường thẳng song song. Chủ đề 3 . TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC Dạng 1. Tính độ dài đoạn thẳng. Dạng 2. Chứng minh hệ thức hình học. Dạng 3. Liên quan đến tỉ số diện tích tam giác. Chủ đề 4 . KHÁI NIỆM HAI TAM GIÁC ĐỒNG DẠNG – TRƯỜNG HỢP ĐỒNG DẠNG THỨ NHẤT Dạng 1. Tìm tỉ số đồng dạng của hai tam giác. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh hai tam giác đồng dạng. Chủ đề 5 . TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI Dạng 1. Chứng minh hai tam giác đồng dạng. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Nhận biết hai tam giác đồng dạng để tính góc. Chủ đề 6 . TRƯỜNG HỢP ĐỒNG DẠNG THỨ BA Dạng 1. Chứng minh hai tam giác đồng dạng. Dạng 2. Chứng minh hệ thức hình học. Dạng 3. Tính độ dài đoạn thẳng. CHƯƠNG 4 . HÌNH LĂNG TRỤ ĐỨNG HÌNH CHÓP ĐỀU Chủ đề 1 . CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG ỨNG DỤNG THỰC TẾ CỦA TAM GIÁC ĐỒNG DẠNG Dạng 1. Chứng minh hai tam giác vuông đồng dạng. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh hệ thức hình học. Dạng 4. Tính diện tích đa giác. Dạng 5. Ứng dụng thực tế của tam giác đồng dạng. Chủ đề 2 . ÔN TẬP CHƯƠNG Dạng 1. Tính độ dài đoạn thẳng. Dạng 2. Tính tỉ số, diện tích và tỉ số diện tích. Dạng 3. Chứng minh đoạn thẳng bằng nhau. Dạng 4. Tính tỉ số của hai đường thẳng. Chủ đề 3 . HÌNH HỘP CHỮ NHẬT Dạng 1. Xác định vị trí của hai đường thẳng trong không gian. Dạng 2. Chứng minh đường thẳng song song với mặt phẳng. Chứng minh hai mặt phẳng song song. Dạng 3. Tìm giao tuyến của hai mặt phẳng. Chủ đề 4 . THỂ TÍCH CỦA HÌNH HỘP CHỮ NHẬT Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố khác của hình hộp chữ nhật. Chủ đề 5 . HÌNH LĂNG TRỤ ĐỨNG Dạng 1. Tìm số mặt, số đỉnh, số cạnh của hình lăng trụ đứng. Dạng 2. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố của hình lăng trụ đứng. Chủ đề 6 . HÌNH CHÓP ĐỀU Dạng 1. Tính số mặt, số đỉnh, số cạnh, của một hình chóp đều. Dạng 2. Chứng minh các quan hệ song song, vuông góc bằng nhau trong hình chóp đều. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố của hình chóp đều. Chủ đề 7 . ÔN TẬP CHƯƠNG Dạng 1. Xác định vị trí của đường thẳng với mặt phẳng, của hai mặt phẳng. Dạng 2. Tính số mặt, số đỉnh, số cạnh của hình lăng trụ đứng, hình chóp đều. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố của hình hộp chữ nhật, hình lăng trụ đứng, hình chóp đều.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6