Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Dương Kinh Hải Phòng

Nội dung Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Dương Kinh Hải Phòng Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 2 năm 2023-2024 phòng GD&ĐT Dương Kinh - Hải Phòng Đề thi thử Toán vào 10 lần 2 năm 2023-2024 phòng GD&ĐT Dương Kinh - Hải Phòng Xin chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023-2024 do Phòng Giáo dục và Đào tạo UBND quận Dương Kinh, thành phố Hải Phòng tổ chức. Kỳ thi sẽ diễn ra vào ngày 06 tháng 05 năm 2023, đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích đề thi thử Toán vào lớp 10 lần 2 năm 2023-2024 phòng GD&ĐT Dương Kinh - Hải Phòng: 1. Một cơ sở sản xuất kem chuẩn bị làm ra 1000 chiếc kem giống nhau theo đơn đặt hàng. Cốc đựng kem có dạng hình nón, chiều cao cốc là 15cm, đường kính miệng cốc là 6cm. Kem được đổ đầy cốc và dư ra phía ngoài một lượng có dạng nửa hình cầu có bán kính bằng bán kính miệng cốc. Hãy tính lượng kem cần chuẩn bị để hoàn thành đơn đặt hàng trên. 2. Cho tam giác nhọn ABC nội tiếp đường tròn, hai đường cao của tam giác ABC cắt nhau tại H. Vẽ đường kính của đường tròn. Gọi là giao điểm của đường thẳng với đường tròn (O) (K khác A). Gọi L là giao điểm của BC và EF, P là giao điểm của AC và KD. Hãy chứng minh các phát biểu sau: a) Tứ giác nội tiếp. b) là trung điểm của đoạn thẳng . c) Ba điểm L, K, T thẳng hàng. 3. Dịch vụ internet của 2 nhà mạng: - Nhà mạng A: Lắp đặt thiết bị ban đầu mất 500,000 đồng, cước internet hàng tháng 150,000 đồng. - Nhà mạng B: Miễn phí thiết bị ban đầu, cước internet hàng tháng 200,000 đồng. Hãy biểu diễn số tiền khách hàng phải trả khi sử dụng internet trong x tháng đối với cả 2 nhà mạng. Nếu chỉ đăng ký gói cước sử dụng trong 6 tháng, đăng ký nhà mạng nào sẽ tiết kiệm hơn?

Nguồn: sytu.vn

Đăng nhập để đọc

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi gồm 20 câu trắc nghiệm (03 điểm) và 05 câu tự luận (07 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Bảy ngày 04 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi gồm 04 câu trắc nghiệm (02 điểm) và 06 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho Parabol (P): y = x2 và đường thẳng d: y = -2x + m – 1 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) sao cho. + Một phân xưởng theo kế hoạch phải may 900 bộ quần áo trong một thời gian quy định, mỗi ngày phân xưởng may được số bộ quần áo là như nhau. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng may được bao nhiêu bộ quần áo? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB < AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn. b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O; R) và đỉnh A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kì thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – m + 3 (m là tham số) và parapol (P): y = x2. a) Vẽ đồ thị (P). b) Tìm các số nguyên m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn: x12(x2 + 2) + x22(x1 + 2) =< 10. + Nhằm đáp ứng nhu cầu sử dụng khẩu trang chống dịch COVID-19, theo kế hoạch, hai tổ sản xuất của một nhà máy dự định làm 720000 khẩu trang. Do áp dụng kĩ thuật mới nên tổ I đã sản xuất vượt kế hoạch 15% và tổ II vượt kế hoạch 12%, vì vậy họ đã làm được 819000 khẩu trang. Hỏi theo kế hoạch số khẩu trang của mỗi tổ sản xuất là bao nhiêu? + Cho nửa đường tròn tâm O bán kính 3cm có đường kính AB. Gọi C là điểm thuộc nửa đường tròn sao cho AC > BC. Vẽ OD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB). Tiếp tuyến tại B của nửa đường tròn cắt tia AC tại F. a) Chứng minh: ODCE là tứ giác nội tiếp. b) Chứng minh: OCD = CBF. c) Cho BAC = 30°. Tính diện tích phần tam giác ABF nằm bên ngoài đường tròn (O;3cm). d) Khi C di động trên nửa đường tròn (O;3cm). Tìm vị trí điểm C sao cho chu vi tam giác OCE lớn nhất.
Đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2mx + m – 2 = 0 (m là tham số). a) Tìm tất cả các giá trị m để phương trình có hai nghiệm phân biệt dương. b) Gọi x1 và x2 là các nghiệm của phương trình. Tìm m để biểu thức M đạt giá trị nhỏ nhất. + Chứng minh rằng: A = a7 – a chia hết cho 7 với mọi a thuộc Z. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm BC; BE và CF là các đường cao (E và F là chân các đường cao). Các tiếp tuyến với đường tròn (O) tại B và C cắt nhau tại S. Gọi N và P lần lượt là giao điểm của BS với EF và AS với (O) (P khác A) . Chứng minh rằng: a) MN vuông góc BF. b) AB.CP = AC.BP. c) CAM = BAP.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6