Nội dung Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Trà Vinh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Trà Vinh: 1. Cho phương trình \(x^2 - 2(m - 1)x + 2m - 3 = 0\) (trong đó \(x\) là biến và \(m\) là tham số). a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của tham số \(m\). b) Tìm giá trị của \(m\) để phương trình có hai nghiệm \(x1, x2\) thỏa mãn \((x1 - 2)(2x1 + 3x2 - 3x1x2 + 2m) = 0. 2. Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(O\). Các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Các đường thẳng \(DE\) và \(CB\) cắt nhau tại \(M\), \(AM\) cắt \(O\) tại \(N\) (\(N\) khác \(A\)). Chứng minh rằng: a) Tứ giác \(BCDE\) nội tiếp và \(MB \times MC = MD \times ME\). b) Góc \(MDN = MAE\). c) \(HN\) vuông góc \(AM\). 3. Cho các số thực \(a, b\) thỏa mãn \(a^2 + b^2 = 4\). Tìm giá trị nhỏ nhất của biểu thức \(T = 4 + 4ab - a^4 - b^4\).
Nguồn: sytu.vn