Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi môn Toán lớp 10 Trường THPT Võ Thành Trinh năm 2021-2022

Nguồn: onluyen.vn

Đăng nhập để đọc

Đề thi HSG lớp 10 môn Toán cấp trường năm 2020 2021 trường THPT Nguyễn Huệ Quảng Nam
Nội dung Đề thi HSG lớp 10 môn Toán cấp trường năm 2020 2021 trường THPT Nguyễn Huệ Quảng Nam Bản PDF Đề thi HSG môn Toán lớp 10 cấp trường năm học 2020-2021 của trường THPT Nguyễn Huệ - Quảng Nam là một bài thi khá đa dạng và phong phú với nhiều dạng bài tập khác nhau. Đề thi bao gồm 5 bài toán dạng tự luận, được thiết kế để kiểm tra khả năng nắm vững kiến thức của học sinh trong chương trình Toán lớp 10.Bài thi được thiết kế trên một trang giấy đơn, với thời gian làm bài là 90 phút. Đề thi cung cấp một ma trận và lời giải chi tiết cho các bài toán, giúp học sinh dễ dàng theo dõi và tự kiểm tra lại kết quả của mình.Các chủ đề trong đề thi bao gồm:- Hệ phương trình: Học sinh sẽ cần giải hệ hai phương trình bậc nhất hai ẩn và phương trình bậc hai một ẩn.- Hệ thức Vi-et và ứng dụng: Học sinh sẽ được vận dụng để tìm các giá trị của tham số cho trước.- Hàm số y = ax^2: Học sinh cần nhận biết và vẽ parabol, cũng như hiểu tương quan giữa đường thẳng và parabol.- Biến đổi biểu thức chứa căn thức bậc hai: Học sinh cần rút gọn biểu thức chứa căn thức bậc hai.- Hệ thức về cạnh và đường cao trong tam giác vuông: Học sinh sẽ chứng minh đẳng thức có liên quan đến cạnh và đường cao của tam giác vuông, và vận dụng để giải bài toán liên quan.Đề thi này đánh giá khả năng suy luận, giải quyết vấn đề và ứng dụng kiến thức Toán lớp 10 của học sinh. Bằng cách này, đề thi giúp học sinh rèn luyện kỹ năng và củng cố kiến thức một cách hiệu quả.
Đề thi chọn HSG lớp 10 môn Toán lần 1 năm 2020 2021 trường THPT chuyên KHTN Hà Nội
Nội dung Đề thi chọn HSG lớp 10 môn Toán lần 1 năm 2020 2021 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn Học sinh giỏi lớp 10 môn Toán lần 1 năm học 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội Đề thi chọn Học sinh giỏi lớp 10 môn Toán lần 1 năm học 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội Ngày Thứ Năm 10 tháng 09 năm 2020, Trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 10 năm học 2020-2021 lần thứ nhất. Đề thi chọn Học sinh giỏi môn Toán lớp 10 lần 1 năm 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 180 phút (không tính thời gian phát đề). Trích đề thi chọn HSG môn Toán lớp 10 lần 1 năm 2020-2021 trường THPT chuyên KHTN - Hà Nội: Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Điểm P nằm trong tam giác sao cho PB = PC. Tìm điểm Q trên đường tròn ngoại tiếp tam giác PBC và nằm trong tam giác sao cho PQA + OAP = 90 độ. Gọi M là trung điểm của BC. Điểm K thuộc cạnh BC sao cho KAB = MAC. Chứng minh rằng QK vuông góc QP. Tìm tất cả các số nguyên dương n sao cho tất cả các ước nguyên dương (phân biệt) của n có thể sắp xếp thành một bảng hình chữ nhật trong đó tổng các số trên mỗi hàng và mỗi cột đều bằng nhau. Tìm tất cả các bộ ba số nguyên dương (x, y, p) với p là số nguyên tố thỏa mãn: x^2 - 3xy + p^2.y^2 = 12y. Đề thi này khá khó, đòi hỏi sự tỉ mỉ và logic cao từ các thí sinh. Hy vọng các em sẽ hoàn thành tốt và đạt kết quả cao trong kỳ thi này.
Đề thi Olympic lớp 10 môn Toán năm học 2019 2020 cụm Sóc Sơn Mê Linh Hà Nội
Nội dung Đề thi Olympic lớp 10 môn Toán năm học 2019 2020 cụm Sóc Sơn Mê Linh Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội Đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, và đề thi đi kèm lời giải chi tiết. Trích dẫn đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội: 1. Một người có một khu đất bãi rộng dọc theo bờ sông. Người đó muốn làm một hàng rào hình chữa E để chia khu đất thành hai phần để trồng rau và chăn nuôi. Để tính toán chi phí, nguyên vật liệu đối với hàng rào song song với bờ sông là 80000 đồng/mét, đối với phần còn lại là 40000 đồng/mét. Hỏi diện tích lớn nhất của phần đất mà người đó rào được với chi phí vật liệu 20 triệu đồng. 2. Trong mặt phẳng tọa độ Oxy, hình thang ABCD vuông tại A và D(2;2), CD = 2AB. Gọi H là hình chiếu của D lên cạnh AC và M là trung điểm của HC. Phương trình đường thẳng DH và BM lần lượt là 2x + y - 6 = 0 và 4x + 7y - 61 = 0. Yêu cầu tìm tọa độ các đỉnh A, B, C của hình thang. 3. Cho tam giác ABC và điểm O bất kỳ trong tam giác. Gọi M, N, P lần lượt là hình chiếu của O lên các cạnh BC, AC, AB. Chứng minh rằng BC/OM + AC/ON + AB/OP ≥ 2p/r, trong đó p là nửa chu vi và r là bán kính đường tròn nội tiếp tam giác ABC.
Đề thi chọn HSG lớp 10 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị Bản PDF - Nội dung bài viết Đề Thi Chọn Học Sinh Giỏi Toán Lớp 10 Trường THPT Thị Xã Quảng Trị Đề Thi Chọn Học Sinh Giỏi Toán Lớp 10 Trường THPT Thị Xã Quảng Trị Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị đã tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 10 môn Toán năm học 2019 – 2020. Đề thi bao gồm 07 bài toán dạng tự luận, với thời gian làm bài là 180 phút. Đề thi không chỉ có câu hỏi mà còn có lời giải chi tiết và thang điểm để học sinh tham khảo. Một trong những câu hỏi đáng chú ý của đề là: "Cho tam giác ABC có chu vi bằng 20, góc BAC = 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 là hình chiếu vuông góc của A, B, C lên BC, CA, AB và M là điểm nằm trong tam giác ABC thỏa mãn ABM = BCM = CAM = φ. Tính cot φ và bán kính đường tròn ngoại tiếp tam giác A1B1C1." Câu hỏi khác như sau: "Cho tam giác ABC có trọng tâm G và điểm E thỏa mãn BE + 3EC = 0. Gọi I là giao điểm của AC và GE, tính tỉ số IA/IC." và "Trong mặt phẳng tọa độ Oxy, hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2;1). Hãy tìm tọa độ các đỉnh của hình chữ nhật ABCD." Đề thi chọn HSG Toán lớp 10 trường THPT thị xã Quảng Trị không chỉ giúp học sinh ôn tập kiến thức mà còn đánh giá khả năng làm bài và tư duy logic của học sinh. Chúc các em học sinh đạt kết quả cao trong kỳ thi này!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6