Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ song song trong không gian Toán 11 KNTTvCS

Tài liệu gồm 389 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề quan hệ song song trong không gian trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTvCS), có đáp án và lời giải chi tiết. CHƯƠNG IV . QUAN HỆ SONG SONG TRONG KHÔNG GIAN. BÀI 10 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. + Dạng toán 1. Tìm giao tuyến của hai mặt phẳng. + Dạng toán 2. Tìm giao điểm của đường thẳng và mặt phẳng. + Dạng toán 3. Bài toán xác định thiết diện. + Dạng toán 4. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng quy. BÀI 11 . HAI ĐƯỜNG THẲNG SONG SONG. + Dạng toán 1. Chứng minh hai đường thẳng song song. + Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. BÀI 12 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG. + Dạng toán 1. Xác định, chứng minh đường thẳng song song mặt phẳng. + Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. + Dạng toán 3. Bài toán xác định thiết diện. + Dạng toán 4. Câu hỏi lý thuyết. BÀI 13 . HAI MẶT PHẲNG SONG SONG. + Dạng toán 1. Chứng minh hai mặt phẳng song song. + Dạng toán 2. Chứng minh đường thẳng song song với mặt phẳng. + Dạng toán 3. Chứng minh hai đường thẳng song song. + Dạng toán 4. Bài toán liên quan đến tỷ lệ độ dài. + Dạng toán 5. Bài toán xác định giao tuyến. + Dạng toán 6. Bài toán xác định thiết diện. BÀI 14 . PHÉP CHIẾU SONG SONG.

Nguồn: toanmath.com

Đăng nhập để đọc

Đường thẳng và mặt phẳng trong không gian, quan hệ song song - Nguyễn Ngọc Dũng
Nhằm giúp các em học sinh học tốt bộ môn hình học 11, nhóm chúng tôi biên soạn ebook “Hình học 11”. Ở phần 1 này, chúng tôi tổng hợp kiến thức, phương pháp giải toán và bài tập tham khảo của phần “Quan hệ song song”. Đây là phần kiến thức cơ bản và là nền tảng để các em học sinh bắt đầu bước chân vào “Hình học không gian”. §1. Đại cương về đường thẳng và mặt phẳng 1. Một số khái niệm về hình không gian 2. Biểu diễn một hình không gian như thế nào? 3. Một mặt phẳng được xác định như thế nào? 4. Các tính chất thừa nhận trong không gian 5. Hình chóp 6. Một số lưu ý khi học hình không gian 7. Bài tập tự luận Dạng 1: Xác định giao tuyến của hai mặt phẳng Dạng 2: Xác định giao điểm của đường thẳng và mặt phẳng + Dạng 1: Hình biển diễn không gian và các tính chất thừa nhận + Dạng 2: Giao tuyến của hai mặt phẳng và thiết diện [ads] + Dạng 3: Giao điểm của đường thẳng và mặt phẳng + Dạng 4: Ba điểm thẳng hàng và các bài toán khác §2. Hai đường thẳng song song. Hai đường thẳng chéo nhau §3. Đường thẳng song song mặt phẳng §4. Hai mặt phẳng song song + Dạng 1: Xét sự song song của hai mặt phẳng + Dạng 2: Thiết diện song song với một mặt phẳng cho trước + Dạng 3: Xét sự song song của hai mặt phẳng + Dạng 4: Thiết diện song song với một mặt phẳng cho trước + Dạng 5: Xét sự song song của hai mặt phẳng + Dạng 6: thiết diện song song với một mặt phẳng cho trước §5. Phép chiếu song song. Hình biểu diễn của một hình không gian §6. Ôn tập cuối chương
Đường thẳng và mặt phẳng trong không gian, quan hệ song song - Trần Quốc Nghĩa
Tài liệu gồm 78 trang phân dạng chi tiết các dạng toán đường thẳng và mặt phẳng trong không gian, quan hệ song song kèm theo hệ thống bài tập tự luận và trắc nghiệm có đáp án. CÁC DẠNG TOÁN ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN QUAN HỆ SONG SONG Vấn đề 1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG + Dạng 1. Các quan hệ cơ bản. Sử dụng hệ tiên đề + Dạng 2. Tìm giao tuyến của hai mặt phẳng (loại 1) + Dạng 3. Tìm giao điểm của đường thẳng và mặt phẳng. Tìm thiết diện (loại 1) + Dạng 4. Chứng minh các điểm thẳng hàng. Chứng minh các đường thẳng đồng qui Dạng 5. Chứng minh đường thẳng di động d đi qua điểm cố định I + Dạng 6. Quỹ tích giao điểm I của hai đường thẳng di động d1 và d2 BÀI TẬP TỔNG HỢP VẤN ĐỀ 1 [ads] Vấn đề 2. QUAN HỆ SONG SONG TRONG KHÔNG GIAN + Dạng 1. Chứng minh hai đường thẳng song song + Dạng 2. Tìm giao tuyến của hai mặt phẳng (loại 2) + Dạng 3. Chứng minh đường thẳng song song với mặt phẳng + Dạng 4. Tìm thiết diện của hình chóp và mp(P) (loại 2) + Dạng 5. Chứng minh hai mặt phẳng song song + Dạng 6. Định lí Talet trong không gian + Dạng 7. Hình lăng trụ – Hình hộp – Hình chóp cụt BÀI TẬP TỔNG HỢP VẤN ĐỀ 2 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 + Bài 1. Đại cương về đường thẳng và mặt phẳng + Bài 2. Hai đường thẳng song song + Bài 3. Đường thẳng song song với mặt phẳng + Bài 4. Hai mặt phẳng song song + Bài 5. Phép chiếu song song BÀI TẬP TỔNG HỢP CHỦ ĐỀ 3
Phân dạng và hướng dẫn giải bài toán quan hệ song song trong không gian - Đặng Việt Đông
Tài liệu gồm 82 trang phân dạng, hướng dẫn phương pháp giải và tuyển tập các bài toán trắc nghiệm chủ đề quan hệ song song trong không gian (Hình học 11) có đáp án kèm lời giải chi tiết. Các dạng toán gồm: Đại cương về đường thẳng và mặt phẳng trong không gian A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Xác định giao tuyến của hai mặt phẳng + Dạng 2. Xác định giao điểm của đường thẳng và mặt phẳng + Dạng 3. Ba điểm thẳng hàng, ba đường thẳng đồng quy trong không gian + Dạng 4. Xác định thiết diện của một mặt phẳng với hình chóp Hai đường thẳng chéo nhau và hai đường thẳng song song A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Chứng minh hai đường thẳng song song + Dạng 2. Chứng minh bốn điểm đồng phẳng và ba đường thẳng đồng qui [ads] Đường thẳng song song với mặt phẳng A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Chứng minh đường thẳng song song với mặt phẳng + Dạng 2. Xác định thiết diện song song với đường thẳng Hai mặt phẳng song song A – Lý thuyết tóm tắt B – Bài tập + Dạng 1. Chứng minh hai mặt phẳng song song + Dạng 2. Xác định thiết diện của (a) với hình chóp khi biết (a) với một mặt phẳng (b) cho trước
Phương pháp xác định giao điểm - giao tuyến - thiết diện trong không gian
Tài liệu hướng dẫn phương pháp xác định giao điểm, giao tuyến và thiết diện trong hình học không gian thông qua các bài tập có lời giải chi tiết. Dạng 1 : Xác định giao tuyến của hai mặt phẳng (a) và (b) Phương pháp: + Tìm hai điểm chung phân biệt của hai mặt phẳng (a) và (b) + Đường thẳng đi qua hai điểm chung ấy là giao tuyến cần tìm Chú ý: Để tìm chung của (a) và (b) thường tìm 2 đường thẳng đồng phẳng lần lượt nằm trong hai mp giao điểm nếu có của hai đường thẳng này là điểm chung của hai mặt phẳng Dạng 2: Xác định giao điểm của đường thẳng a và mặt phẳng (a) Phương pháp: + Tìm đường thẳng b nằm trong mặt phẳng (a) + Giao điểm của a và b là giao đt a và mặt phẳng (a) [ads] Dạng 3: Chứng minh ba điểm thẳng hàng Phương pháp: + Chứng minh ba điểm đó cùng thuộc hai mp phân biệt + Khi đó ba điểm thuộc đường thẳng giao tuyến của hai mp Dạng 4: Tìm thiết diện của hình chóp và mặt phẳng (a) Chú ý: Mặt phẳng (a) có thể chỉ cắt một số mặt của hình chóp Cách 1: Xác định thiết diện bằng cách kéo dài các giao tuyến Cách 2: Xác định thiết diện bằng cách vẽ giao tuyến phụ

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6